Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pilot Feasibility Stud ; 9(1): 95, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312127

RESUMO

BACKGROUND: This paper describes the protocol for the Nano X Image Guidance (Nano X IG) trial, a single-institution, clinical imaging study. The Nano X is a prototype fixed-beam radiotherapy system developed to investigate the feasibility of a low-cost, compact radiotherapy system to increase global access to radiation therapy. This study aims to assess the feasibility of volumetric image guidance with cone beam computed tomography (CBCT) acquired during horizontal patient rotation on the Nano X radiotherapy system. METHODS: In the Nano X IG study, we will determine whether radiotherapy image guidance can be performed with the Nano X radiotherapy system where the patient is horizontally rotated while scan projections are acquired. We will acquire both conventional CBCT scans and Nano X CBCT scans for 30 patients aged 18 and above and receiving radiotherapy for head/neck or upper abdomen cancers. For each patient, a panel of experts will assess the image quality of Nano X CBCT scans against conventional CBCT scans. Each patient will receive two Nano X CBCT scans to determine the image quality reproducibility, the extent and reproducibility of patient motion and assess patient tolerance. DISCUSSION: Fixed-beam radiotherapy systems have the potential to help ease the current shortfall and increase global access to radiotherapy treatment. Advances in image guidance could facilitate fixed-beam radiotherapy using horizontal patient rotation. The efficacy of this radiotherapy approach is dependent on our ability to image and adapt to motion due to rotation and for patients to tolerate rotation during treatment. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04488224. Registered on 27 July 2020.

2.
J Med Imaging Radiat Oncol ; 65(4): 454-459, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34086405

RESUMO

INTRODUCTION: Mongolia has a population of 3.3 million and is classified by the WHO as a lower middle-income country. Cancer is now a major public health issue and one of the leading causes of mortality. Within the framework of an existing national cancer control plan, the National Cancer Centre of Mongolia (NCCM) aimed to implement 3D conformal radiation planning and linac-based treatment delivery. METHODS: In 2018, an opportunity arose for collaboration between the Mongolia Society for Radiation Oncology (MOSTRO), the National Cancer Centre Mongolia (NCCM), the Asia-Pacific Radiation Oncology Special Interest Group (APROSIG) of the Royal Australian and New Zealand College of Radiologists (RANZCR) and the Asia-Pacific Special Interest Group (APSIG) of the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) and radiation therapists (RTTs) from a range of Australian centres. We describe here the results to date of this collaboration. RESULTS: Despite a number of significant technical and practical barriers, successful linac commissioning was achieved in 2019. Key factors for success included a leadership receptive to change management, stable bureaucracy and health systems, as well as a synchronised effort, regional cooperation and mentorship. CONCLUSION: Future directions for ongoing collaborative efforts include a continued focus on education, practical training in radiotherapy planning and delivery and postgraduate education initiatives. Radiotherapy safety and quality assurance remain an ongoing priority, particularly as technological advances are sequentially implemented.


Assuntos
Neoplasias , Radioterapia Conformacional , Ásia , Austrália , Humanos , Mongólia , Neoplasias/radioterapia , Tecnologia
3.
Phys Med Biol ; 66(10)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33878747

RESUMO

Fixed-gantry radiation therapy has been proposed as a low-cost alternative to the conventional rotating-gantry radiation therapy, that may help meet the rising global treatment demand. Fixed-gantry systems require gravitational motion compensated reconstruction algorithms to produce cone-beam CT (CBCT) images of sufficient quality for image guidance. The aim of this work was to adapt and investigate five CBCT reconstruction algorithms for fixed-gantry CBCT images. The five algorithms investigated were Feldkamp-Davis-Kress (FDK), prior image constrained compressed sensing (PICCS), gravitational motion compensated FDK (GMCFDK), motion compensated PICCS (MCPICCS) (a novel CBCT reconstruction algorithm) and simultaneous motion estimation and iterative reconstruction (SMEIR). Fixed-gantry and rotating-gantry CBCT scans were acquired of 3 rabbits, with the rotating-gantry scans used as a reference. Projections were sorted into rotation bins, based on the angle of rotation of the rabbit during image acquisition. The algorithms were compared using the structural similarity index measure root mean square error, and reconstruction time. Evaluation of the reconstructed volumes showed that, when compared with the reference rotating-gantry volume, the conventional FDK algorithm did not accurately reconstruct fixed-gantry CBCT scans. Whilst the PICCS reconstruction algorithm reduced some motion artefacts, the motion estimation reconstruction methods (GMCFDK, MCPICCS and SMEIR) were able to greatly reduce the effect of motion artefacts on the reconstructed volumes. This finding was verified quantitatively, with GMCFDK, MCPICCS and SMEIR reconstructions having RMSE 17%-19% lower and SSIM 1% higher than a conventional FDK. However, all motion compensated fixed-gantry CBCT reconstructions had a 56%-61% higher RMSE and 1.5% lower SSIM than FDK reconstructions of conventional rotating-gantry CBCT scans. The results show that motion compensation is required to reduce motion artefacts for fixed-gantry CBCT reconstructions. This paper further demonstrates the feasibility of fixed-gantry CBCT scans, and the ability of CBCT reconstruction algorithms to compensate for motion due to horizontal rotation.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Algoritmos , Animais , Artefatos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Coelhos , Rotação
4.
Phys Med Biol ; 66(6): 064003, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33661762

RESUMO

PURPOSE: A radiotherapy system with a fixed treatment beam and a rotating patient positioning system could be smaller, more robust and more cost effective compared to conventional rotating gantry systems. However, patient rotation could cause anatomical deformation and compromise treatment delivery. In this work, we demonstrate an image-guided treatment workflow with a fixed beam prototype system that accounts for deformation during rotation to maintain dosimetric accuracy. METHODS: The prototype system consists of an Elekta Synergy linac with the therapy beam orientated downward and a custom-built patient rotation system (PRS). A phantom that deforms with rotation was constructed and rotated within the PRS to quantify the performance of two image guidance techniques: motion compensated cone-beam CT (CBCT) for pre-treatment volumetric imaging and kilovoltage infraction monitoring (KIM) for real-time image guidance. The phantom was irradiated with a 3D conformal beam to evaluate the dosimetric accuracy of the workflow. RESULTS: The motion compensated CBCT was used to verify pre-treatment position and the average calculated position was within -0.3 ± 1.1 mm of the phantom's ground truth position at 0°. KIM tracked the position of the target in real-time as the phantom was rotated and the average calculated position was within -0.2 ± 0.8 mm of the phantom's ground truth position. A 3D conformal treatment delivered on the prototype system with image guidance had a 3%/2 mm gamma pass rate of 96.3% compared to 98.6% delivered using a conventional rotating gantry linac. CONCLUSIONS: In this work, we have shown that image guidance can be used with fixed-beam treatment systems to measure and account for changes in target position in order to maintain dosimetric coverage during horizontal rotation. This treatment modality could provide a viable treatment option when there insufficient space for a conventional linear accelerator or where the cost is prohibitive.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Radioterapia Guiada por Imagem/métodos , Algoritmos , Humanos , Imageamento Tridimensional/métodos , Teste de Materiais , Movimento (Física) , Aceleradores de Partículas , Radiometria , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , Rotação
5.
Australas Phys Eng Sci Med ; 42(2): 599-609, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31087233

RESUMO

With the discontinued distribution of the I-125 Oncura Onco seed (model 6711), the Theragenics AgX100® I-125 seeds were considered as a suitable alternative for eye plaque brachytherapy as their physical properties matched the requirements for use with the ROPES eye plaques. The purpose of this study aims at validating the dosimetry of the AgX-100 loaded ROPES plaques (11 mm diameter, 15 mm diameter with flange, 15 mm diameter with notch, 18 mm diameter) and assess the differences with the discontinued I-125 6711 model. To independently verify the plaque dosimetry, the brachytherapy module of RADCALC® version 6.2.3.6 was commissioned for the new AgX-100 I-125 seed using the published AAPM TG43 data from the literature. Experimental dosimetry verification was performed using EBT3 Gafchromic™ film and TLD-100 micro-cubes in a specially designed Solid Water® phantom. Both RADCALC® and film confirmed the dosimetry calculated by Plaque Simulator (PS) version 6.4.6 The dose calculated by PS agrees with RADCALC® to within 2% for depths of 1-15 mm for the 4 available ROPES plaques. The dosimetric measurements agreed with the calculations of PS for clinically relevant depths (4 mm to 6 mm) within the evaluated uncertainties of 4.7% and 7.2% for EBT3 film and TLDs respectively. The AgX-100 I-125 seed was a suitable replacement for the 6711 I-125 seed. Due to the introduction of the stainless-steel backscatter factor in PS v6.4.6, the department has decided to report both the homogenous dose and heterogeneity corrected dose for each eye plaque patient.


Assuntos
Braquiterapia , Neoplasias Oculares/radioterapia , Radioisótopos do Iodo/química , Relação Dose-Resposta à Radiação , Humanos , Imagens de Fantasmas , Radiometria , Dosimetria Termoluminescente
6.
Med Phys ; 46(3): 1331-1340, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30582751

RESUMO

PURPOSE: Compared to conventional linacs with rotating gantries, a fixed-beam radiotherapy system could be smaller, more robust and more cost-effective. In this work, we developed and commissioned a prototype x-ray radiotherapy system utilizing a fixed vertical radiation beam and horizontal patient rotation. METHODS: The prototype system consists of an Elekta Synergy linac with gantry fixed at 0° and a custom-built patient rotation system (PRS). The PRS was designed to immobilize patients and safely rotate them about the horizontal axis. The interlocks and emergency stops of the linac and PRS were connected. Custom software was developed to monitor the system status, control the motion of the PRS and modify treatment plans for the fixed-beam configuration. Following installation, the prototype system was commissioned for three-dimensional (3D) conformal therapy based on guidelines specified in AAPM TG-45 and TG-142, with modifications for the fixed-beam geometry made where necessary. RESULTS: The system and control software was tested in a variety of machine states and executed motion, stop and beam gating commands as expected. Interlocks and emergency stops of the linac and PRS were found to correctly stop PRS motion and both kV and MV radiation beams when triggered. For 3D conformal treatments, the prototype system met all AAPM TG-45 and TG-142 specifications for geometric and dosimetric accuracy. Motion of the PRS was within 0.6 ± 0.3 mm and 0.10° ± 0.07° of input values for translation and rotation respectively. The axis of rotation of the PRS was coincident with the radiation beam axis to less than 1 mm. End-to-end treatment verification for 6 MV conformal treatments showed less than 2% difference between planned and delivered dose for all fields. CONCLUSION: In this work, we have developed and commissioned a radiotherapy system that utilizes a fixed vertical radiation beam and horizontal patient rotation. This system is a proof-of-concept prototype for a fixed-beam treatment system without a rotating gantry. Fixed-beam systems that are smaller and more cost-effective could help in improving global access to radiotherapy.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Posicionamento do Paciente/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Algoritmos , Desenho de Equipamento , Humanos , Posicionamento do Paciente/métodos , Dosagem Radioterapêutica , Rotação
7.
Phys Med Biol ; 63(20): 205007, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30221627

RESUMO

Fixed-gantry cone-beam computed tomography (CBCT), where the imaging hardware is fixed while the subject is continuously rotated 360° in the horizontal position, has implications for building compact and affordable fixed-gantry linear accelerators (linacs). Fixed-gantry imaging with a rotating subject presents a challenging image reconstruction problem where the gravity-induced motion is coupled to the subject's rotation angle. This study is the first to investigate the feasibility of fixed-gantry CBCT using imaging data of three live rabbits in an ethics-approved study. A novel data-driven motion correction method that combines partial-view reconstruction and motion compensation was developed to overcome this challenge. Fixed-gantry CBCT scans of three live rabbits were acquired on a standard radiotherapy system with the imaging beam fixed and the rabbits continuously rotated using an in-house programmable rotation cradle. The reconstructed images of the thoracic region were validated against conventional CBCT scans acquired at different cradle rotation angles. Results showed that gravity-induced motion caused severe motion blur in all of the cases if unaccounted for. The proposed motion correction method yielded clinically usable image quality with <1 mm gravity-induced motion blur for rabbits that were securely immobilized on the rotation cradle. Shapes of the anatomic structures were correctly reconstructed with <0.5 mm accuracy. Translational motion accounted for the majority of gravity-induced motion. The motion-corrected reconstruction represented the time-averaged location of the thoracic region over a 360° rotation. The feasibility of fixed-gantry CBCT has been demonstrated. Future work involves the validation of imaging accuracy for human subjects, which will be useful for emerging compact fixed-gantry radiotherapy systems.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Gravitação , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Movimento , Animais , Aceleradores de Partículas/instrumentação , Coelhos
8.
Phys Med Biol ; 63(10): 105012, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29667933

RESUMO

Fixed-beam radiotherapy systems with subjects rotating about a longitudinal (horizontal) axis are subject to gravity-induced motion. Limited reports on the degree of this motion, and any deformation, has been reported previously. The purpose of this study is to quantify the degree of anatomical motion caused by rotating a subject around a longitudinal axis, using cone-beam CT (CBCT). In the current study, a purpose-made longitudinal rotating was aligned to a Varian TrueBeam kV imaging system. CBCT images of three live rabbits were acquired at fixed rotational offsets of the cradle. Rigid and deformable image registrations back to the original position were used to quantify the motion experienced by the subjects under rotation. In the rotation offset CBCTs, the mean magnitude of rigid translations was 5.7 ± 2.7 mm across all rabbits and all rotations. The translation motion was reproducible between multiple rotations within 2.1 mm, 1.1 mm, and 2.8 mm difference for rabbit 1, 2, and 3, respectively. The magnitude of the mean and absolute maximum deformation vectors were 0.2 ± 0.1 mm and 5.4 ± 2.0 mm respectively, indicating small residual deformations after rigid registration. In the non-rotated rabbit 4DCBCT, respiratory diaphragm motion up to 5 mm was observed, and the variation in respiratory motion as measured from a series of 4DCBCT scans acquired at each rotation position was small. The principle motion of the rotated subjects was rigid translational motion. The deformation of the anatomy under rotation was found to be similar in scale to normal respiratory motion. This indicates imaging and treatment of rotated subjects with fixed-beam systems can use rigid registration as the primary mode of motion estimation. While the scaling of deformation from rabbits to humans is uncertain, these proof-of-principle results indicate promise for fixed-beam treatment systems.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/instrumentação , Gravitação , Movimento , Animais , Coelhos , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...