Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(3): 033502, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820003

RESUMO

In this work, we present the measurement of L-band emission from buried Sc/V targets in experiments performed at the OMEGA laser facility. The goal of these experiments was to study non-local thermodynamic equilibrium plasmas and benchmark atomic physics codes. The L-band emission was measured simultaneously by the time resolved DANTE power diagnostic and the recently fielded time integrated Soreq-Transmission Grating Spectrometer (TGS) diagnostic. The TGS measurement was used to support the spectral reconstruction process needed for the unfolding of the DANTE data. The Soreq-TGS diagnostic allows for broadband spectral measurement in the 120 eV-2000 eV spectral band, covering L- and M-shell emission of mid- and high-Z elements, with spectral resolution λ/Δλ = 8-30 and accuracy better than 25%. The Soreq-TGS diagnostic is compatible with ten-inch-manipulator platforms and can be used for a wide variety of high energy density physics, laboratory astrophysics, and inertial confinement fusion experiments.

2.
Sci Rep ; 8(1): 3243, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459758

RESUMO

The interaction of high-power ultra-short lasers with materials offers fascinating wealth of transient phenomena which are in the core of novel scientific research. Deciphering its evolution is a complicated task that strongly depends on the details of the early phase of the interaction, which acts as complex initial conditions. The entire process, moreover, is difficult to probe since it develops close to target on the sub-picosecond timescale and ends after some picoseconds. Here we present experimental results related to the fields and charges generated by the interaction of an ultra-short high-intensity laser with metallic targets. The temporal evolution of the interaction is probed with a novel femtosecond resolution diagnostics that enables the differentiation of the contribution by the high-energy forerunner electrons and the radiated electromagnetic pulses generated by the currents of the remaining charges on the target surface. Our results provide a snapshot of huge pulses, up to 0.6 teravolt per meter, emitted with multi-megaelectronvolt electron bunches with sub-picosecond duration and are able to explore the processes involved in laser-matter interactions at the femtosecond timescale.

3.
Sci Rep ; 6: 35000, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713541

RESUMO

Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our 'snapshots' capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators.

4.
Opt Express ; 24(26): 29512-29520, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059338

RESUMO

The interaction of a high-intensity short-pulse laser with thin solid targets produces electron jets that escape the target and positively charge it, leading to the formation of the electrostatic potential that in turn governs the ion acceleration. The typical timescale of such phenomena is on the sub-picosecond level. Here we show, for the first time, temporally-resolved measurements of the first released electrons that escaped from the target, so-called fast electrons. Their total charge, energy and temporal profile are provided by means of a diagnostics based on Electro-Optical Sampling with temporal resolution below 100 fs.

5.
Phys Rev Lett ; 106(13): 134801, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517389

RESUMO

We report on the first generation of 5.5-7.5 MeV protons by a moderate-intensity short-pulse laser (∼5×10(17) W/cm(2), 40 fsec) interacting with frozen H(2)O nanometer-size structure droplets (snow nanowires) deposited on a sapphire substrate. In this setup, the laser intensity is locally enhanced by the snow nanowire, leading to high spatial gradients. Accordingly, the nanoplasma is subject to enhanced ponderomotive potential, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced over the short scale length, and protons are accelerated to MeV-level energies.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 2): 026205, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17930119

RESUMO

An efficient control scheme of resonant three-oscillator interactions using an external chirped frequency drive is suggested. The approach is based on formation of a double phase-locked (autoresonant) state in the system, as the driving oscillation passes linear resonance with one of the interacting oscillators. When doubly phase locked, the amplitudes of the oscillators increase with time in proportion to the driving frequency deviation from the linear resonance. The stability of this phase-locked state and the effects of dissipation and of the initial three-oscillator frequency mismatch on the autoresonance are analyzed. The associated autoresonance threshold phenomenon in the driving amplitude is also discussed. In contrast to other nonlinear systems, driven, autoresonant three-oscillator excitations are independent of the sign of the driving frequency chirp rate.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(1 Pt 2): 016409, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11800792

RESUMO

Theoretical and experimental investigations of the absorption in metallic aluminum of femtosecond-laser radiation pulses with peak intensity I0 less similar 10(15) W/cm(2) are reported. Energy balance equations are solved for electron and phonon subsystems, together with Helmholtz equation for the laser radiation. Expressions for the relaxation times as functions of electron and phonon temperatures are obtained, with no free parameters. Contrary to the assumption made in published studies, we find that the interband rather than the intraband (Drude) absorption plays the dominant role in the near infrared and throughout the visible region at low and moderate intensities. For 50 fs, 800 nm laser pulses the absorption in interband transitions dominates for intensities up to few times 10(13) W/cm(2). For such pulses, broadening of the parallel-band interband absorption line with the increase in electron and phonon temperatures results, for I0 < or =5 x 10(13) W/cm(2), in the decrease of the absorption coefficient compared to the room-temperature value. In this paper, we present both the first theoretical prediction and the first experimental observation of this phenomenon. Dielectric permittivity gradients within the skin layer also contribute to the decrease in absorption. The mechanisms of the lattice disordering are considered quantitatively, and it is shown that for I0 < 10(14) W/cm(2) melting does not occur in the laser-pulse duration. Experimental results are presented for 800 and 400 nm wavelengths. The agreement between the theory and the experiment is very good.

8.
Artigo em Inglês | MEDLINE | ID: mdl-11046475

RESUMO

The energy penetration depth of a short (100 fs) Ti-sapphire laser pulse (0.8 &mgr;m) of intensity 3x10(16) W/cm(2), in solid density materials has been measured. High-Z (BaF2) and low-Z (MgF2) solid layers targets were used. The penetration depth was determined from the measurement of the x-ray emission spectra, as a function of the target thickness. The investigation of these spectra showed that in the low-Z case, solid density material to a depth of 50 nm was heated to a peak electron temperature of approximately 150 eV. For the high-Z material, the penetration depth corresponding to this temperature exceeded 100 nm. This is evidence of a larger heat penetration depth in a high-Z material in comparison to a low-Z material. A model based on electron heat conduction is used to estimate the energy penetration depth. It is suggested that the larger heat penetration in high-Z material is due to heating of the material, caused by the radiation flux, generated by the electron heat conduction.

9.
Appl Opt ; 39(16): 2559-64, 2000 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18345171

RESUMO

An off-axis holographic recording method for fast-moving objects that has a time resolution of several picoseconds and a large depth of field is suggested. Two different but mutually coherent laser pulses, the original pulse (20 ps) and a stretched pulse (60 ps), are interfered. The short pulse determines the resolution, and the stretched pulse increases the field depth. Interference patterns between the short and the expanded pulses, for lambda = 1.064 microm and lambda = 0.532 microm, are demonstrated.

11.
Phys Rev A ; 41(11): 5820-5824, 1990 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-9902981
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...