Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6666): 103-109, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797008

RESUMO

Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.


Assuntos
Arqueologia , Florestas , Humanos , Brasil
2.
Curr Biol ; 33(14): 2878-2887.e4, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37369208

RESUMO

Bacteria, ectomycorrhizal (EcM) fungi, and land plants have been coevolving for nearly 200 million years, and their interactions presumably contribute to the function of terrestrial ecosystems. The direction, stability, and strength of bacteria-EcM fungi interactions across landscapes and across a single plant host, however, remains unclear. Moreover, the genetic mechanisms that govern them have not been addressed. To these ends, we collected soil samples from Bishop pine forests across a climate-latitude gradient spanning coastal California, fractionated the soil samples based on their proximity to EcM-colonized roots, characterized the microbial communities using amplicon sequencing, and generated linear regression models showing the impact that select bacterial taxa have on EcM fungal abundance. In addition, we paired greenhouse experiments with transcriptomic analyses to determine the directionality of these relationships and identify which genes EcM-synergist bacteria express during tripartite symbioses. Our data reveal that ectomycorrhizas (i.e., EcM-colonized roots) enrich conserved bacterial taxa across climatically heterogeneous regions. We also show that phylogenetically diverse EcM synergists are positively associated with plant and fungal growth and have unique gene expression profiles compared with EcM-antagonist bacteria. In sum, we identify common mechanisms that facilitate widespread and diverse multipartite symbioses, which inform our understanding of how plants develop in complex environments.


Assuntos
Micorrizas , Micorrizas/genética , Micorrizas/metabolismo , Ecossistema , Florestas , Plantas/microbiologia , Raízes de Plantas , Bactérias/genética , Solo , Microbiologia do Solo , Fungos/genética , Árvores/microbiologia
3.
Mycologia ; 115(1): 69-86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36399708

RESUMO

The Neotropics have recently emerged as an important region for studies of tropical ectomycorrhizal (ECM) fungi. Specific neotropical areas with high ECM host tree densities have ECM fungal diversities rivaling those of higher-latitude forests. Some forests of the Guiana Shield are dominated by endemic ECM trees of the Fabaceae, including species of Dicymbe (subfam. Detarioideae), Aldina (subfam. Papilionoideae), and Pakaraimaea (Cistaceae). One of the most species-rich ECM fungal families present in each of these systems is Russulaceae. Long-term sampling in forests in Guyana's Pakaraima Mountains has revealed a number of species of the Russulaceae genera Lactarius, Lactifluus, and Russula. In this study, we document a previously unknown, distinct lineage of Lactarius subg. Plinthogalus containing eight species from the Guiana Shield. Here, we describe five of these species from Guyana as new to science: Lactarius humiphilus, Lactarius mycenoides, Lactarius guyanensis, Lactarius dicymbophilus, and Lactarius aurantiolamellatus. Morphological descriptions, habit, habitat, and known distribution are provided for each new species. Sequence data for the barcode internal transcribed spacer (ITS) locus are provided for types and most other collections of the new taxa, and a molecular phylogenetic analysis based on the ITS, 28S, and RPB2 (second-largest subunit of the RNA polymerase II) loci across the genus Lactarius corroborates their morphology-based infrageneric placement. The discovery of this lineage changes our insights into the biogeography and evolutionary history of Lactarius subg. Plinthogalus.


Assuntos
Agaricales , Basidiomycota , Fabaceae , Micorrizas , Humanos , Guiana , Filogenia , DNA Fúngico/genética , Agaricales/genética , Micorrizas/genética , Fabaceae/microbiologia
4.
Mycologia ; 114(6): 919-933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194092

RESUMO

The tropics were long considered to have few ectomycorrhizal fungi, presumably due to a paucity of ectomycorrhizal host plants relative to higher-latitude ecosystems. However, an increase in research in tropical regions over the past 30 years has greatly expanded knowledge about the occurrence of tropical ectomycorrhizal fungi. To assess their broad biogeographic and diversity patterns, we conducted a comprehensive review and quantitative data analysis of 49 studies with 80 individual data sets along with additional data from GlobalFungi to elucidate tropical diversity patterns and biogeography of ectomycorrhizal fungi across the four main tropical regions: the Afrotropics, the Neotropics, Southeast Asia, and Oceania. Generalized linear models were used to explore biotic and abiotic influences on the relative abundance of the 10 most frequently occurring lineages. We also reviewed the available literature and synthesized current knowledge about responses of fungi to anthropogenic disturbances, and their conservation status and threats. We found that /russula-lactarius and /tomentella-thelephora were the most abundant lineages in the Afrotropics, the Neotropics, and Southeast Asia, whereas /cortinarius was the most abundant lineage in Oceania, and that /russula-lactarius, /inocybe, and /tomentella-thelephora were the most species-rich lineages across all of the tropical regions. Based on these analyses, we highlight knowledge gaps for each tropical region. Increased sampling of tropical regions, collaborative efforts, and use of molecular methodologies are needed for a more comprehensive view of the ecology and diversity of tropical ectomycorrhizal fungi.


Assuntos
Agaricales , Basidiomycota , Micorrizas , Micorrizas/genética , Ecossistema , Filogenia , Fungos , Basidiomycota/genética , Plantas/microbiologia
5.
New Phytol ; 236(2): 698-713, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811430

RESUMO

The biogeography of neotropical fungi remains poorly understood. Here, we reconstruct the origins and diversification of neotropical lineages in one of the largest clades of ectomycorrhizal fungi in the globally widespread family Russulaceae. We inferred a supertree of 3285 operational taxonomic units, representing worldwide internal transcribed spacer sequences. We reconstructed biogeographic history and diversification and identified lineages in the Neotropics and adjacent Patagonia. The ectomycorrhizal Russulaceae have a tropical African origin. The oldest lineages in tropical South America, most with African sister groups, date to the mid-Eocene, possibly coinciding with a boreotropical migration corridor. There were several transatlantic dispersal events from Africa more recently. Andean and Central American lineages mostly have north-temperate origins and are associated with North Andean uplift and the general north-south biotic interchange across the Panama isthmus, respectively. Patagonian lineages have Australasian affinities. Diversification rates in tropical South America and other tropical areas are lower than in temperate areas. Neotropical Russulaceae have multiple biogeographic origins since the mid-Eocene involving dispersal and co-migration. Discontinuous distributions of host plants may explain low diversification rates of tropical lowland ectomycorrhizal fungi. Deeply diverging neotropical fungal lineages need to be better documented.


Assuntos
Basidiomycota , Micorrizas , Micorrizas/genética , Filogenia , Filogeografia , América do Sul
6.
Mycologia ; 114(4): 769-797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35695889

RESUMO

Nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) sequence data from eight type specimens of previously described Squamanita species were obtained. Phylogenetic analysis of ITS and partial nuc 28S rDNA data revealed Squamanita as paraphyletic splitting into two monophyletic groups, which we recognize as the genera Squamanita and Dissoderma. We accept 14 Squamanita and nine Dissoderma species, provide the first sequences of 13 of these, and describe six new species of Squamanita and three new species of Dissoderma. We transfer three species of Squamanita into Dissoderma, one into Cystoderma, and treat S. basii and S. umbilicata as synonyms of D. paradoxum. Squamanita can be distinguished from Dissoderma by the generally larger fleshier basidiomata with a tricholomatoid or amanitoid stature and yellowish to tawny brown pileus and often similarly colored stipe. Most species have cheilo- and pleurocystidia. Species of Dissoderma are small, collybioid or mycenoid, lack cystidia, and the pileus and often upper stipe are purplish gray. Both genera parasitize basidiomata of other agarics.


Assuntos
Agaricales , Agaricales/classificação , Agaricales/genética , DNA Fúngico/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Filogenia , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
7.
Mycologia ; 114(3): 626-641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35605135

RESUMO

Polydiscidium is an enigmatic, monotypic, and rarely reported genus of Ascomycota of uncertain placement. The morphologically unique Polydiscidium martynii grows on dead wood and forms compound ascomata composed of thick, black, gelatinous somatic tissue that branches out from a common base. Multiple apothecia are located on the branches, mostly toward the tips, and are composed of 8-spored asci and paraphyses embedded in a gelatinous matrix that turns blue in Melzer's reagent. The species was previously known from only three collections from Guyana (holotype), Trinidad, and the Democratic Republic of the Congo and no sequences exist. Due to its peculiar morphology, taxonomic affinities of Polydiscidium have been debated, with different authors having placed it in Helotiaceae, Leotiaceae, or Leotiomycetes incertae sedis. Recent collections of this species resulting from long-term field work in Guyana and Cameroon led us to revisit the morphology and phylogenetic position of this fungus. Newly generated sequences of P. martynii were added to an Ascomycota-wide six-locus data set. The resulting phylogeny showed Polydiscidium to be a member of order Sclerococcales (Eurotiomycetes). Next, a four-locus (18S, ITS, 28S, mtSSU) phylogenetic reconstruction revealed that Polydiscidium is congeneric with Sclerococcum. A new combination is proposed for this species, Sclerococcum martynii. Micromorphological features, including the gelatinous hymenium composed of asci with amyloid gel cap and septate brown ascospores, are in agreement with Sclerococcum. New combinations are proposed for two additional species: Sclerococcum chiangraiensis and S. fusiformis. Finally, Dactylosporales is considered a later synonym of Sclerococcales.


Assuntos
Ascomicetos , Ascomicetos/genética , Guiana , Filogenia , Esporos Fúngicos , Madeira/microbiologia
8.
Mycologia ; : 1-19, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452350

RESUMO

Brasilioporus olivaceoflavidus, gen. et sp. nov., Brasilioporus simoniarum, sp. nov., Neotropicomus australis, gen. et sp. nov., and Nevesoporus nigrostipitatus, gen. et sp. nov. (Boletaceae, Boletales, Basidiomycota), are described from the endangered Atlantic Forest biome of eastern Brazil. New combinations into these new genera are proposed for the Guyanese taxa Xerocomus parvogracilis, Tylopilus rufonigricans, and Tylopilus exiguus. Boletaceae subfamily Chalciporoideae was recircumscribed to include the new genus Nevesoporus. Molecular phylogenetic analyses using a multilocus data set (ITS+28S+TEF1+RPB1+RPB2) from a large taxon set across the Boletaceae justify recognition of the new genera. Morphological, ecological, and DNA sequence data are provided for the new species. A key to known native and introduced bolete species from the Brazilian Atlantic Forest is provided.

9.
Environ Microbiol Rep ; 14(2): 254-264, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102713

RESUMO

Mushroom-forming fungi are important sources of food and medicine in many regions of the world, and their development and health are known to depend on various microbes. Recent studies have examined the structure of mushroom-inhabiting bacterial (MIB) communities and their association with local environmental variables, but global-scale diversity and determinants of these communities remain poorly understood. Here we examined the MIB global diversity and community composition in relation to climate, soil and host factors. We found a core global mushroom microbiome, accounting for 30% of sequence reads, while comprising a few bacterial genera such as Halomonas, Serratia, Bacillus, Cutibacterium, Bradyrhizobium and Burkholderia. Our analysis further revealed an important role of host phylogeny in shaping the communities of MIB, whereas the effects of climate and soil factors remained negligible. The results suggest that the communities of MIB and free-living bacteria are structured by contrasting community assembly processes and that fungal-bacterial interactions are an important determinant of MIB community structure.


Assuntos
Agaricales , Microbiota , Agaricales/genética , Bactérias/genética , Fungos/genética , Filogenia , Microbiologia do Solo
10.
Mycologia ; 113(1): 168-190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33175671

RESUMO

Four epitypes and three new species of Amanita (Amanitaceae, Agaricales, Agaricomycetes, Basidiomycota) are described from Guineo-Congolian rainforests of Cameroon. Amanita echinulata, A. fulvopulverulenta, A. robusta, and A. bingensis are epitypified based on collections that are the first since the species were described nearly a century ago. Morphological features of the epitypes are described and enumerated. Amanita minima, Amanita luteolamellata, and A. goossensfontanae are described as new and added to the known macromycota of tropical Africa. Habit, habitat, and known distribution are provided for each species. Sequence data for the internal transcribed spacer (ITS) locus are provided for types and other collections of all taxa, and a molecular phylogenetic analysis across the genus Amanita corroborates morphology-based infrageneric placement for each.


Assuntos
Amanita , Classificação , Agaricales/classificação , Agaricales/genética , Agaricales/isolamento & purificação , Amanita/classificação , Amanita/genética , Amanita/isolamento & purificação , Camarões , DNA Espaçador Ribossômico/genética , Ecossistema , Genes Fúngicos , Filogenia , Floresta Úmida
11.
Sci Rep ; 9(1): 13822, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554920

RESUMO

Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors.

12.
Mycologia ; 110(5): 985-995, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303458

RESUMO

Gyroporus (Gyroporaceae, Boletales) is a highly diverse genus of poroid ectomycorrhizal mushrooms with a nearly worldwide distribution. Previous attempts to unravel the diversity within this genus proved difficult due to the presence of semicryptic species and ambiguous results from analysis of ribosomal RNA markers. In this study, we employ a combined morphotaxonomic and phylogenetic approach to delimit species and elucidate geographic and evolutionary patterns in Gyroporus. For phylogenetic analyses, the protein-coding genes atp6 (mitochondrial adenosine triphosphate [ATP] synthase subunit 6) and rpb2 (nuclear second largest subunit of RNA polymerase II) were selected based on their utility in studies of Boletales. We infer several distinct clades, most notably one corresponding to G. castaneus as a speciose Northern Hemisphere group, another unifying G. cyanescens and like entities, and a third group unifying G. longicystidiatus and a New World sister species. Also notable is the recovery of a sister relationship between the cyanescens and longicystidiatus clades. We formally describe five new species of Gyroporus, outline a number of provisional species, and briefly discuss distributional patterns. This study provides an important scaffold for future work on this well-known but poorly understood genus of fungi.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Carpóforos/crescimento & desenvolvimento , Variação Genética , Filogeografia , Basidiomycota/crescimento & desenvolvimento , ATPases Mitocondriais Próton-Translocadoras/genética , Subunidades Proteicas/genética , RNA Polimerase II/genética , Análise de Sequência de DNA
13.
New Phytol ; 220(4): 1076-1091, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29689121

RESUMO

Contents Summary 1076 I. Introduction 1076 II. Historical overview 1077 III. Identities and distributions of tropical ectomycorrhizal plants 1077 IV. Dominance of tropical forests by ECM trees 1078 V. Biogeography of tropical ECM fungi 1081 VI. Beta diversity patterns in tropical ECM fungal communities 1082 VII. Conclusions and future research 1086 Acknowledgements 1087 References 1087 SUMMARY: Ectomycorrhizal (ECM) associations were historically considered rare or absent from tropical ecosystems. Although most tropical forests are dominated by arbuscular mycorrhizal (AM) trees, ECM associations are widespread and found in all tropical regions. Here, we highlight emerging patterns of ECM biogeography, diversity and ecosystem functions, identify knowledge gaps, and offer direction for future research. At the continental and regional scales, tropical ECM systems are highly diverse and vary widely in ECM plant and fungal abundance, diversity, composition and phylogenetic affinities. We found strong regional differences among the dominant host plant families, suggesting that biogeographical factors strongly influence tropical ECM symbioses. Both ECM plants and fungi also exhibit strong turnover along altitudinal and soil fertility gradients, suggesting niche differentiation among taxa. Ectomycorrhizal fungi are often more abundant and diverse in sites with nutrient-poor soils, suggesting that ECM associations can optimize plant nutrition and may contribute to the maintenance of tropical monodominant forests. More research is needed to elucidate the diversity patterns of ECM fungi and plants in the tropics and to clarify the role of this symbiosis in nutrient and carbon cycling.


Assuntos
Biodiversidade , Micorrizas/fisiologia , Filogeografia , Clima Tropical , Florestas
14.
IMA Fungus ; 8(2): 287-298, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29242776

RESUMO

Two new species in the genus Auritella (Inocybaceae) are described as new from tropical rainforest in Cameroon. Descriptions, photographs, line drawings, and a worldwide taxonomic key to the described species of Auritella are presented. Phylogenetic analysis of 28S rDNA and rpb2 nucleotide sequence data suggests at least five phylogenetic species that can be ascribed to Auritella occur in the region comprising Cameroon and Gabon and constitute a strongly supported monophyletic subgroup within the genus. Phylogenetic analysis of ITS data supports the conspecificity of numerous collections attributed to the two new species as well as the monophyly of Australian species of Auritella. This work raises the known number of described species of Auritella to thirteen worldwide, four of which occur in tropical Africa, one in tropical India, and eight in temperate and tropical regions of Australia. This is the first study to confirm an ectomycorrhizal status of Auritella using molecular data.

15.
IMA Fungus ; 8(2): 335-353, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29242779

RESUMO

The ending of dual nomenclatural systems for pleomorphic fungi in 2011 requires the reconciliation of competing names, ideally linked through culture based or molecular methods. The phylogenetic systematics of Hypocreales and its many genera have received extensive study in the last two decades, however resolution of competing names in Cordycipitaceae has not yet been addressed. Here we present a molecular phylogenetic investigation of Cordycipitaceae that enables identification of competing names in this family, and provides the basis upon which these names can be maintained or suppressed. The taxonomy presented here seeks to harmonize competing names by principles of priority, recognition of monophyletic groups, and the practical usage of affected taxa. In total, we propose maintaining nine generic names, Akanthomyces, Ascopolyporus, Beauveria, Cordyceps, Engyodontium, Gibellula, Hyperdermium, Parengyodontium, and Simplicillium and the rejection of eight generic names, Evlachovaea, Granulomanus, Isaria, Lecanicillium, Microhilum, Phytocordyceps, Synsterigmatocystis, and Torrubiella. Two new generic names, Hevansia and Blackwellomyces, and a new species, Beauveria blattidicola, are described. New combinations are also proposed in the genera Akanthomyces, Beauveria, Blackwellomyces, and Hevansia.

16.
New Phytol ; 215(1): 443-453, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28493414

RESUMO

Temperate ectomycorrhizal (ECM) fungi show segregation whereby some species dominate in organic layers and others favor mineral soils. Weak layering in tropical soils is hypothesized to decrease niche space and therefore reduce the diversity of ectomycorrhizal fungi. The Neotropical ECM tree Dicymbe corymbosa forms monodominant stands and has a distinct physiognomy with vertical crown development, adventitious roots and massive root mounds, leading to multi-stemmed trees with spatially segregated rooting environments: aerial litter caches, aerial decayed wood, organic root mounds and mineral soil. We hypothesized that these microhabitats host distinct fungal assemblages and therefore promote diversity. To test our hypothesis, we sampled D. corymbosa ectomycorrhizal root tips from the four microhabitats and analyzed community composition based on pyrosequencing of fungal internal transcribed spacer (ITS) barcode markers. Several dominant fungi were ubiquitous but analyses nonetheless suggested that communities in mineral soil samples were statistically distinct from communities in organic microhabitats. These data indicate that distinctive rooting zones of D. corymbosa contribute to spatial segregation of the fungal community and likely enhance fungal diversity.


Assuntos
Fabaceae/microbiologia , Micorrizas/fisiologia , Biodiversidade , Ecossistema , Fabaceae/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Microbiologia do Solo , Simbiose , Clima Tropical
17.
BMC Evol Biol ; 17(1): 33, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28122504

RESUMO

BACKGROUND: Armillaria is a globally distributed mushroom-forming genus composed primarily of plant pathogens. Species in this genus are prolific producers of rhizomorphs, or vegetative structures, which, when found, are often associated with infection. Because of their importance as plant pathogens, understanding the evolutionary origins of this genus and how it gained a worldwide distribution is of interest. The first gasteroid fungus with close affinities to Armillaria-Guyanagaster necrorhizus-was described from the Neotropical rainforests of Guyana. In this study, we conducted phylogenetic analyses to fully resolve the relationship of G. necrorhizus with Armillaria. Data sets containing Guyanagaster from two collecting localities, along with a global sampling of 21 Armillaria species-including newly collected specimens from Guyana and Africa-at six loci (28S, EF1α, RPB2, TUB, actin-1 and gpd) were used. Three loci-28S, EF1α and RPB2-were analyzed in a partitioned nucleotide data set to infer divergence dates and ancestral range estimations for well-supported, monophyletic lineages. RESULTS: The six-locus phylogenetic analysis resolves Guyanagaster as the earliest diverging lineage in the armillarioid clade. The next lineage to diverge is that composed of species in Armillaria subgenus Desarmillaria. This subgenus is elevated to genus level to accommodate the exannulate mushroom-forming armillarioid species. The final lineage to diverge is that composed of annulate mushroom-forming armillarioid species, in what is now Armillaria sensu stricto. The molecular clock analysis and ancestral range estimation suggest the most recent common ancestor to the armillarioid lineage arose 51 million years ago in Eurasia. A new species, Guyanagaster lucianii sp. nov. from Guyana, is described. CONCLUSIONS: The armillarioid lineage evolved in Eurasia during the height of tropical rainforest expansion about 51 million years ago, a time marked by a warm and wet global climate. Species of Guyanagaster and Desarmillaria represent extant taxa of these early diverging lineages. Desarmillaria represents an armillarioid lineage that was likely much more widespread in the past. Guyanagaster likely evolved from a gilled mushroom ancestor and could represent a highly specialized endemic in the Guiana Shield. Armillaria species represent those that evolved after the shift in climate from warm and tropical to cool and arid during the late Eocene. No species in either Desarmillaria or Guyanagaster are known to produce melanized rhizomorphs in nature, whereas almost all Armillaria species are known to produce them. The production of rhizomorphs is an adaptation to harsh environments, and could be a driver of diversification in Armillaria by conferring a competitive advantage to the species that produce them.


Assuntos
Armillaria/classificação , Basidiomycota/classificação , Raízes de Plantas/microbiologia , África , Clima , Evolução Molecular , Guiana , Filogenia , Filogeografia , Análise de Sequência de DNA
18.
IMA Fungus ; 7(2): 239-245, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27990330

RESUMO

Kombocles bakaiana gen. sp. nov. is described as new to science. This sequestrate, partially hypogeous fungus was collected around and within the stilt root system of an ectomycorrhizal (ECM) tree of the genus Uapaca (Phyllanthaceae) in a Guineo-Congolian mixed tropical rainforest in Cameroon. Molecular data place this fungus in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) with no clear relationship to previously described taxa within the family. Macro- and micromorphological characters, habitat, and DNA sequence data are provided. Unique morphological features and a molecular phylogenetic analysis of 304 sequences across the Boletales justify the recognition of the new taxa. Kombocles bakaiana is the fourth sequestrate Boletaceae described from the greater African tropics, and the first to be described from Cameroon.

19.
Fungal Biol ; 120(12): 1540-1553, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27890090

RESUMO

A new genus and three new species of Agaricales are described from the Pakaraima Mountains of Guyana in the central Guiana Shield. All three of these new species fruit on the ground in association with species of the ectomycorrhizal (ECM) tree genus Dicymbe (Fabaceae subfam. Caesalpinioideae) and one species has been shown to form ectomycorrhizas. Multi-locus molecular phylogenetic analyses place Guyanagarika gen. nov. within the Catathelasma clade, a lineage in the suborder Tricholomatineae of the Agaricales. We formally recognize this 'Catathelasma clade' as an expanded family Catathelasmataceae that includes the genera Callistosporium, Catathelasma, Guyanagarika, Macrocybe, Pleurocollybia, and Pseudolaccaria. Within the Catathelasmataceae, Catathelasma and Guyanagarika represent independent origins of the ectomycorrhizal habit. Guyanagarika is the first documented case of an ECM Agaricales genus known only from the Neotropics.


Assuntos
Agaricales/classificação , Agaricales/isolamento & purificação , Fabaceae/microbiologia , Micorrizas/classificação , Micorrizas/isolamento & purificação , Guiana , Tipagem de Sequências Multilocus , Filogenia
20.
IMA Fungus ; 7(1): 59-73, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27433441

RESUMO

The sequestrate false truffles Elaphomyces favosus, E. iuppitercellus, and E. labyrinthinus spp. nov. are described as new to science from the Dja Biosphere Reserve, Cameroon. Elaphomyces adamizans sp. nov. is described as new from the Pakaraima Mountains of Guyana. The Cameroonian species are the first Elaphomyces taxa to be formally described from Africa, occurring in lowland Guineo-Congolian tropical rainforests dominated by the ectomycorrhizal (ECM) canopy tree Gilbertiodendron dewevrei (Fabaceae subfam. Caesalpinioideae). The Guyanese species is the third to be discovered in lowland tropical South America, occurring in forests dominated by the ECM trees Pakaraimaea dipterocarpacea (Dipterocarpaceae) and Dicymbe jenmanii (Fabaceae subfam. Caesalpinioideae). Macromorphological, micromorphological, habitat, and DNA sequence data are provided for each new species. Molecular and morphological data place these fungi in Elaphomycetaceae (Eurotiales, Ascomycota). Unique morphological features are congruent with molecular delimitation of each of the new species based on a phylogenetic analysis of the rDNA ITS and 28S loci across the Elaphomycetaceae. The phylogenetic analysis also suggests that a common ancestor is shared between some Elaphomyces species from Africa and South America, and that species of the stalked, volvate genus Pseudotulostoma may be nested in Elaphomyces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...