Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Chembiochem ; : e202300854, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613434

RESUMO

The utilization of the glycated amino acids formyline and pyrraline as well as their peptide-bound derivatives by 14 Saccharomyces yeasts, including 6 beer yeasts (bottom and top fermenting), one wine yeast, 6 strains isolated from natural habitats and one laboratory reference yeast strain (wild type) was investigated. All yeasts were able to metabolize glycated amino acids via the Ehrlich pathway to the corresponding Ehrlich metabolites. While formyline and small amounts of pyrraline entered the yeast cells via passive diffusion, the amounts of dipeptide-bound MRPs, especially the dipeptides glycated at the C-terminus, decreased much faster, indicating an uptake into the yeast cells. Furthermore, the glycation-mediated hydrophobization in general leads to an faster degradation rate compared to the native lysine dipeptides. While the utilization of free formyline is yeast-specific, the amounts of (glycated) dipeptides decreased faster in the presence of brewer's yeasts, which also showed a higher formation rate of Ehrlich metabolites compared to naturally isolated strains. Due to rapid uptake of alanyl dipeptides, it can be assumed that the Ehrlich enzyme system of naturally isolated yeasts is overloaded and the intracellularly released MRP is primarily excreted from the cell. This indicates adaptation of technologically used yeasts to (glycated) dipeptides as a nitrogen source.

2.
J Agric Food Chem ; 72(5): 2718-2726, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275205

RESUMO

Glycation reactions in food lead to the formation of the Amadori rearrangement product (ARP) N-ε-fructosyllysine (fructoselysine, FL), which is taken up with the daily diet and comes into contact with the gut microbiota during digestion. In the present study, nine commercially available probiotic preparations as well as single pure strains thereof were investigated for their FL-degrading capability under anaerobic conditions. One of the commercial preparations as well as three single pure strains thereof was able to completely degrade 0.25 mM FL within 72 h. Three new deglycating lactic acid bacteria species, namely, Lactobacillus buchneri DSM 20057, Lactobacillus jensenii DSM 20557, and Pediococcus acidilactici DSM 25404, could be identified. Quantitative experiments showed that FL was completely deglycated to lysine. Using 13C6-labeled FL as the substrate, it could be proven that the sugar moiety of the Amadori product is degraded to lactic acid, showing for the first time that certain lactic acid bacteria can utilize the sugar moiety as a substrate for lactic acid fermentation.


Assuntos
Lactobacillales , Probióticos , Lisina/metabolismo , Bactérias/metabolismo , Lactobacillales/metabolismo , Açúcares , Ácido Láctico
3.
J Agric Food Chem ; 71(47): 18499-18509, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962901

RESUMO

The objective of the study was to investigate structural changes in the protein-rich, high-molecular-weight fraction of coffee during roasting and their contribution to the melanoidin formation in the course of the Maillard reaction. For this purpose, high- and low-molecular-weight fractions of one raw and five coffee beans with an increased roasting degree were analyzed in terms of general (color, molecular weight, functionality, elemental composition) and specific parameters (amino acid composition, Maillard reaction products). It could be demonstrated that the high -molecular-weight fraction undergoes significant changes during roasting, where proteins appear to play an important role in melanoidin formation due to their diverse nucleophilic side chains. Modification of the amino acid side chains with known Maillard reaction products (MRPs) occurs in the early stages of roasting and decreases rapidly as color development progresses. The decrease suggests that MRPs are involved in further reactions and thus extend the functionality of the amino acid side chains, opening further possibilities for protein modification. Overall, the large number of reaction pathways leads to the formation of a well-mixed, continuous melanoidin spectrum covering a wide range of molecular masses. In this process, cross-linking and fragmentation reactions oppose each other, leading to an approximation of the molecular weight.


Assuntos
Reação de Maillard , Polímeros , Polímeros/química , Aminoácidos , Produtos Finais de Glicação Avançada , Temperatura Alta
4.
J Agric Food Chem ; 71(41): 15261-15269, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796058

RESUMO

Honey from the nectar of the Manuka tree (Leptospermum scoparium) grown in New Zealand contains high amounts of antibacterial methylglyoxal (MGO). MGO can react with proteins to form peptide-bound Maillard reaction products (MRPs) such as Nε-carboxyethyllysine (CEL) and "methylglyoxal-derived hydroimidazolone 1" (MG-H1). To study the reactions of MGO with honey proteins during storage, three manuka honeys with varying amounts of MGO and a kanuka honey (Kunzea ericoides) spiked with various MGO concentrations up to 700 mg/kg have been stored at 37 °C for 10 weeks, and the formation of protein-bound MRPs has been analyzed via high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) following isolation of the protein fraction and enzymatic hydrolysis. During storage, contents of protein-bound CEL and MG-H1 increased continuously, directly depending on the MGO content. For honeys with large amounts of MGO, a slower formation of Nε-fructosyllysine (FL) was observed, indicating competing reactions of glucose and MGO with lysine. Furthermore, the lysine modification increased with storage independently from the MGO concentration. Up to 58-61% of the observed lysine modification was explainable with the formation of CEL and FL, indicating that other reactions, most likely the formation of Heyns products from lysine and fructose, may play an important role. Our results can contribute to the authentication of manuka honey.


Assuntos
Mel , Mel/análise , Espectrometria de Massas em Tandem , Lisina , Aldeído Pirúvico/química , Óxido de Magnésio , Proteínas , Leptospermum/química , Produtos Finais de Glicação Avançada , Reação de Maillard
5.
Acta Neuropathol Commun ; 11(1): 162, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814347

RESUMO

The alpha-synuclein (aSyn) seed amplification assay (SAA) can identify aSyn aggregates as indicator for Lewy body pathology in biomaterials of living patients and help in diagnosing Parkinson´s disease and dementia syndromes. Our objective was to confirm that qualitative results of aSyn SAA are reproducible across laboratories and to determine whether quantitative findings correlate with patient clinical characteristics. Therefore cerebrospinal fluid samples were re-analysed by aSyn SAA in a second laboratory with four technical replicates for each sample. Kinetic parameters derived from each aggregation curve were summarized and correlated with patient characteristics. We found that qualitative findings were identical between the two laboratories for 54 of 55 patient samples. The number of positive replicates for each sample also showed good agreement between laboratories. Moreover, specific kinetic parameters of the SAA showed a strong correlation with clinical parameters, notably with cognitive performance evaluated by the Montreal Cognitive Assessment. We concluded that SAA findings are highly reproducible across laboratories following the same protocol. SAA reports not only the presence of Lewy pathology but is also associated with clinical characteristics. Thus, aSyn SAA can potentially be used for patient stratification and determining the target engagement of aSyn targeting treatments.


Assuntos
Disfunção Cognitiva , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , alfa-Sinucleína/análise , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico
6.
J Agric Food Chem ; 71(32): 12300-12310, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530036

RESUMO

During beer and wine production, Maillard reaction products (MRPs) are formed, which have a particular influence on the taste and aroma of the fermented beverages. Compared to beer, less is known about individual Maillard compounds and especially corresponding yeast metabolites in wine. In this study, 36 selected wines (Amarone, Ripasso, red, and white wines) were analyzed by HPLC-UV and GC-MS concerning the amounts of 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), methylglyoxal (MGO), glyoxal (GO), 5-hydroxymethylfurfural (HMF), and furfural (FF). 3-DG was found to be the dominant compound with values from 3.3 to 35.1 mg/L. The contents of 3-DGal, MGO, GO, HMF, and FF were in a single digit range. In addition to MRPs, the yeast metabolites originating from 3-DG, namely, 3-deoxyfructose and 3-deoxy-2-ketogluconic acid, 2,5-bis(hydroxymethyl)furan and 5-formyl-2-furancarboxylic acid, both formed from HMF, and the FF metabolites furfuryl alcohol and furan-2-carboxylic acid were detected and quantitated in wines for the first time. The amounts were between 0.1 and 53.5 mg/L with especially high contents of the oxidation products. Differences between red and white wines indicate that enological parameters like grape variety, production method, and aging may have an influence on the MRP contents in wines.


Assuntos
Saccharomyces cerevisiae , Vinho , Reação de Maillard , Óxido de Magnésio , Aldeído Pirúvico/análise , Glioxal , Produtos Finais de Glicação Avançada
7.
Mol Nutr Food Res ; 67(18): e2300137, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37465844

RESUMO

SCOPE: Maillard reaction products (MRPs) are believed to interact with the receptor for advanced glycation endproducts (RAGE) and lead to a pro-inflammatory cellular response. The structural basis for this interaction is scarcely understood. This study investigates the effect of individual lysine modifications in free form or bound to casein on human colon cancer cells. METHODS AND RESULTS: Selectively glycated casein containing either protein-bound N-ε-carboxymethyllysine (CML), N-ε-fructosyllysine (FL), or pyrraline is prepared and up to 94%, 97%, and 61% of lysine modification could be attributed to CML, FL, or pyrraline, respectively. HCT 116 cells are treated with free CML, pyrraline, FL, or modified casein for 24 h. Native casein is used as control. Intracellular MRP content is analyzed by UPLC-MS/MS. Microscopic analysis of the transcription factors shows no activation of NFκB by free or protein-bound FL or CML, whereas casein containing protein-bound pyrraline activates Nrf2. RAGE expression is not influenced by free or casein-bound MRPs. Activation of Nrf2 by pyrraline-modified casein is confirmed by analyzing Nrf2 target proteins NAD(P)H dehydrogenase (quinone 1) (NQO1) and heme oxygenase-1 (HO-1). CONCLUSION: Studies on the biological effects of glycated proteins require an individual consideration of defined structures. General statements on the effect of "AGEs" in biological systems are scientifically unsound.


Assuntos
Lisina , Reação de Maillard , Humanos , Lisina/metabolismo , Fator 2 Relacionado a NF-E2 , Caseínas/química , Cromatografia Líquida , Receptor para Produtos Finais de Glicação Avançada , Células HCT116 , Espectrometria de Massas em Tandem , Produtos Finais de Glicação Avançada/química
8.
J Agric Food Chem ; 71(24): 9460-9468, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37282579

RESUMO

To study the protein-bound glycans of equine κ-casein, equine sodium caseinate was first obtained from raw mare's milk by acid precipitation and then fractionated by cation-exchange chromatography. The oligosaccharides of the obtained equine κ-casein were analyzed by RP-HPLC-UV-HRMS after ß-elimination with simultaneous derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP). In addition to the acidic tetrasaccharide derivative Neu5Ac-Gal-[Neu5Ac]-GalNAc-2PMP known from bovine κ-casein, the acidic pentasaccharide derivative Neu5Ac-Gal-[Gal-GlcNAc]-GalNAc-2PMP was identified as the most abundant glycan. The glycosylated amino acid residues were identified using a peptide sequencing approach after digestion with trypsin by HRMS. The threonine T109 was experimentally confirmed for the first time as a glycosylation site in equine κ-casein. Therefore, equine κ-casein seems to be more highly glycosylated than previously thought.


Assuntos
Caseínas , Leite , Animais , Cavalos , Bovinos , Feminino , Caseínas/química , Leite/química , Polissacarídeos/análise , Sequência de Aminoácidos , Oligossacarídeos/química
9.
J Agric Food Chem ; 71(20): 7820-7828, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37172279

RESUMO

9-Oxononanoic acid (9-ONA) was quantitated in peanuts roasted at 170 °C by GC-MS (EI). After roasting peanuts for 40 min, 9-ONA decreased from 1010 µmol/kg protein in the unheated sample to 722 µmol/kg protein, most likely due to modifications of nucleophilic side chains of protein-bound amino acids (lipation). After heating Nα-acetyl-l-lysine and 9-ONA in model experiments, a Schiff base in its reduced form, namely, Nε-carboxyoctyl-acetyl lysine, as well as two isomeric pyridinium derivatives, namely, dicarboxyhexylcarboxyheptylpyridinium-acetyl lysine 1 and 2, were tentatively identified by HPLC-ESI-MS/MS. Based on the identified lipation products of 9-ONA, it can be assumed that lipation reactions represent a mirror-image reaction. For quantitation of Nε-carboxyoctyllysine (COL) in roasted peanuts by means of HPLC-ESI-MS/MS, samples were reduced with sodium borohydride and acid hydrolyzed. For the first time, COL was quantitated after reduction in roasted peanuts. Furthermore, after prolonged roasting of peanuts for 40 min, COL decreased from 139.8 to 22.5 µmol/kg protein, which provides initial evidence for lipation of nucleophilic side chains of protein-bound amino acids by glycerol-bound oxidized fatty acids (GOFAs, e.g., 9-ONA) with the formation of neo-lipoproteins.


Assuntos
Arachis , Lisina , Arachis/química , Lisina/química , Espectrometria de Massas em Tandem , Bases de Schiff , Ácidos Graxos
10.
Foods ; 12(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36900615

RESUMO

Manuka honey is known for its unique antibacterial activity, which is due to methylglyoxal (MGO). After establishing a suitable assay for measuring the bacteriostatic effect in a liquid culture with a time dependent and continuous measurement of the optical density, we were able to show that honey differs in its growth retardingeffect on Bacillus subtilis despite the same content of MGO, indicating the presence of potentially synergistic compounds. In model studies using artificial honey with varying amounts of MGO and 3-phenyllactic acid (3-PLA), it was shown that 3-PLA in concentrations above 500 mg/kg enhances the bacteriostatic effect of the model honeys containing 250 mg/kg MGO or more. It has been shown that the effect correlates with the contents of 3-PLA and polyphenols in commercial manuka honey samples. Additionally, yet unknown substances further enhance the antibacterial effect of MGO in manuka honey. The results contribute to the understanding of the antibacterial effect of MGO in honey.

12.
Anal Bioanal Chem ; 415(13): 2493-2509, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36631574

RESUMO

Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOFMS) is one the most powerful analytical platforms for chemical investigations of complex biological samples. It produces large datasets that are rich in information, but highly complex, and its consistency may be affected by random systemic fluctuations and/or changes in the experimental parameters. This study details the optimization of a data processing strategy that compensates for severe 2D pattern misalignments and detector response fluctuations for saliva samples analyzed across 2 years. The strategy was trained on two batches: one with samples from healthy subjects who had undergone dietary intervention with high/low-Maillard reaction products (dataset A), and the second from healthy/unhealthy obese individuals (dataset B). The combined untargeted and targeted pattern recognition algorithm (i.e., UT fingerprinting) was tuned for key process parameters, the signal-to-noise ratio (S/N), and MS spectrum similarity thresholds, and then tested for the best transform function (global or local, affine or low-degree polynomial) for pattern realignment in the temporal domain. Reliable peak detection achieved its best performance, computed as % of false negative/positive matches, with a S/N threshold of 50 and spectral similarity direct match factor (DMF) of 700. Cross-alignment of bi-dimensional (2D) peaks in the temporal domain was fully effective with a supervised operation including multiple centroids (reference peaks) and a match-and-transform strategy using affine functions. Regarding the performance-derived response fluctuations, the most promising strategy for cross-comparative analysis and data fusion included the mass spectral total useful signal (MSTUS) approach followed by Z-score normalization on the resulting matrix.


Assuntos
Metaboloma , Saliva , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Algoritmos
13.
Food Chem Toxicol ; 173: 113632, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708862

RESUMO

This opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) presents arguments for an updated risk assessment of diet-related exposure to acrylamide (AA), based on a critical review of scientific evidence relevant to low dose exposure. The SKLM arrives at the conclusion that as long as an appropriate exposure limit for AA is not exceeded, genotoxic effects resulting in carcinogenicity are unlikely to occur. Based on the totality of the evidence, the SKLM considers it scientifically justified to derive a tolerable daily intake (TDI) as a health-based guidance value.


Assuntos
Acrilamida , Inocuidade dos Alimentos , Nível de Efeito Adverso não Observado , Acrilamida/toxicidade , Medição de Risco
14.
J Hum Evol ; 175: 103305, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586354

RESUMO

Herbivorous animals that regularly consume tannin-rich food are known to secrete certain tannin-binding salivary proteins (TBSPs), especially proline-rich proteins and histidine-rich proteins, as an effective measure to counteract the antinutritive effects of dietary tannins. Due to their high binding capacity, TBSPs complex with tannins in the oral cavity, and thereby protect dietary proteins and digestive enzymes. Although the natural diet of great apes (Hominidae) is biased toward ripe fruits, analyses of food plants revealed that their natural diet contains considerable amounts of tannins, which is raising the question of possible counter-measures to cope with dietary tannins. In our study, we investigated the salivary amino acid profiles of zoo-housed Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo abelii, and compared their results with corresponding data from Homo sapiens. Individual saliva samples of 42 apes and 17 humans were collected and quantitated by amino acid analysis, using cation-exchange chromatography with postcolumn derivatization, following acid hydrolysis. We found species-specific differences in the salivary amino acid profiles with average total salivary protein concentration ranging from 308.8 mg/dL in Po. abelii to 1165.6 mg/dL in G. gorilla. Total salivary protein was consistently higher in ape than in human saliva samples (174 mg/dL). All apes had on average also higher relative proline levels than humans did. Histidine levels had the highest concentration in the samples from Po. abelii followed by P. paniscus. In all ape species, the high salivary concentrations of proline and histidine are considered to be indicative of high concentrations of TBSPs in hominids. Given that the species differences in salivary composition obtained in this study correspond with overall patterns of secondary compound content in the diet of wild populations, we assume that salivary composition is resilient to acute and long-lasting changes in diet composition in general and tannin content in particular.


Assuntos
Aminoácidos , Gorilla gorilla , Pan paniscus , Pan troglodytes , Pongo abelii , Animais , Humanos , Aminoácidos/análise , Gorilla gorilla/metabolismo , Histidina/análise , Pan paniscus/metabolismo , Pan troglodytes/metabolismo , Pongo abelii/metabolismo , Prolina/análise , Saliva/química , Saliva/metabolismo , Proteínas e Peptídeos Salivares/análise , Taninos/análise , Taninos/metabolismo , Dieta
15.
Food Chem ; 403: 134406, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191424

RESUMO

Protein-polyphenol interactions affect the structure, stability, and functional properties of proteins and polyphenols. Oxidized polyphenols (o-quinones) react rapidly with the sulfhydryl group of cysteine (Cys) residues, inducing covalent bonding between proteins and polyphenols. However, quantitative data on such reactions remain elusive, despite the importance of depicting the significance of such interactions on food structure and function. This work reports the synthesis, purification, and characterization of caffeic acid-cysteine (CA-Cys) and chlorogenic acid-cysteine (CGA-Cys) adducts and their stable isotope analogs, CA-[13C3,15N]Cys and CGA-[13C3,15N]Cys. A sensitive LC-MS/MS isotope dilution method was developed to simultaneously quantify these adducts in foods and beverages. Protein-bound CA-Cys and CGA-Cys were detected in the micro-molar range in milk samples with added CA and CGA, confirming covalent bonding between milk proteins and CA/CGA. These adducts were detected in commercial coffee-containing beverages but not in cocoa-containing drinks. Furthermore, the adducts were found to be partially stable during enzymatic protein hydrolysis.


Assuntos
Ácido Clorogênico , Polifenóis , Polifenóis/química , Ácido Clorogênico/metabolismo , Cisteína/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Bebidas , Proteínas
16.
Animals (Basel) ; 12(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36428320

RESUMO

Steaming hay is increasingly used to treat low-quality forage because it was proven to reduce inhalable allergens such as mould spores, bacteria, and airborne dust particles. Preliminary results have shown a substantial loss of precaecal (pc) digestibility (D) of crude protein (CP) and amino acids (AA). For this purpose, six different batches of hay from central Germany were divided into four subsamples, and each one was individually steamed. Native hay and four replicates of each steamed subsample were analysed for CP, AA, neutral detergent insoluble crude protein (NDICP), neutral detergent soluble crude protein (NDSCP) as well as pepsin insoluble CP (piCP). Based on the analytical parameters, pcD of CP, protein solubility (PS), piCP (% CP) and precaecal digestible (pcd) CP and pcdAA contents were calculated. Selected Maillard reaction products (MRP), namely furosine and carboxymethyllysine (CML), were also analysed. Steaming did not affect CP content (native = 69, steamed = 67 g/kg dry matter, DM; p > 0.05), but it had an impact on the insoluble part of CP. Thus, NDICP increased by 57% (native = 27, steamed = 42 g/kg DM; p < 0.05) and piCP by 15% overall (native = 40, steamed = 46% of CP; p < 0.05). This could be a consequence of the heat damage and the associated increase in MRP. The content of furosine rose by 67% (native = 17.6, steamed = 29.4 mg/100 g DM; p < 0.05). The content of CML increased by 120% (native = 5.1, steamed = 11.3 mg/100 g DM; p < 0.05). We chose to analyse these two MRPs because they represent the reaction products with the limiting AA lysine. In contrast, the soluble fractions of CP declined, while PS as a percentage of CP decreased by 38% as a result of the treatment, and NDSCP was reduced by as much as 41% (p < 0.05). In line with this, the steaming process decreased the pcD of CP (native = 56%, steamed = 35%; p < 0.05) and pcdCP (native = 37.9, steamed = 22.5 g/kg DM; p < 0.05), respectively. The same effects were shown for selected AA; e.g., sulphuric AA pcd methionine plus pcd cysteine decreased by 45%, pcd threonine decreased by 41%, and the limited AA pcd lysine decreased by more than 50% (p < 0.05). In conclusion, the high temperatures generated during steaming lead to protein damage and consequently to a reduction in the pcD of CP and essential AA. Nevertheless, steaming successfully reduces viable microorganisms and binds dust particles. Therefore, steamed hay is still a proper and sometimes the only possible roughage for horses suffering from respiratory diseases such as equine asthma. Essentially, horse diets based on steamed hay should be balanced accordingly.

17.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293093

RESUMO

Cholesterol and its oxidized forms, oxysterols, are ingested from foods and are synthesized de novo. Cholesterol and oxysterols influence molecular and cellular events and subsequent biological responses of immune cells. The amount of dietary cholesterol influence on the levels of LDL cholesterol and blood oxysterols plays a significant role in the induction of pro-inflammatory state in immune cells, leading to inflammatory disorders, including cardiovascular disease. Cholesterol and oxysterols synthesized de novo in immune cells and stroma cells are involved in immune homeostasis, which may also be influenced by an excess intake of dietary cholesterol. Dietary compounds such as ß-glucan, plant sterols/stanols, omega-3 lipids, polyphenols, and soy proteins, could lower blood cholesterol levels by interfering with cholesterol absorption and metabolism. Such dietary compounds also have potential to exert immune modulation through diverse mechanisms. This review addresses current knowledge about the impact of dietary-derived and de novo synthesized cholesterol and oxysterols on the immune system. Possible immunomodulatory mechanisms elicited by cholesterol-lowering dietary compounds are also discussed.


Assuntos
Oxisteróis , Fitosteróis , beta-Glucanas , LDL-Colesterol , Proteínas de Soja , Polifenóis , Colesterol na Dieta , Colesterol/metabolismo , Fitosteróis/farmacologia , Sistema Imunitário/metabolismo
18.
Nutrients ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079854

RESUMO

The reactive 1,2-dicarbonyl compound methylglyoxal (MGO) is consumed with food and its concentrations decrease during digestion. In the present paper, the reaction of MGO with creatine, arginine, and lysine during simulated digestion, and its reaction with creatine during the digestion in human volunteers, was studied. Therefore, simulated digestion experiments with a gastric and an intestinal phase were performed. Additionally, an intervention study with 12 subjects consuming MGO-containing Manuka honey and creatine simultaneously or separately was conducted. Derivatization with o-phenylenediamine and HPLC-UV was used to measure MGO, while creatine and glycated amino compounds were analyzed via HPLC-MS/MS. We show that MGO quickly reacts with creatine and arginine, but not lysine, during simulated digestion. Creatine reacts with 56% of MGO to form the hydroimidazolone MG-HCr, and arginine reacted with 4% of MGO to form the hydroimidazolone MG-H1. In the intervention study, urinary MG-HCr excretion is higher in subjects who consumed MGO and creatine simultaneously compared to subjects who ingested the substances separately. This demonstrates that the 1,2-dicarbonyl compound MGO reacts with amino compounds during human digestion, and glycated adducts are formed. These contribute to dietary glycation products consumed, and should be considered in studies investigating their physiological consequences.


Assuntos
Creatina , Aldeído Pirúvico , Arginina , Digestão , Produtos Finais de Glicação Avançada , Voluntários Saudáveis , Humanos , Lisina , Óxido de Magnésio , Espectrometria de Massas em Tandem
19.
Foods ; 11(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35885358

RESUMO

Glycation reactions play a key role in post-translational modifications of amino acids in food proteins. Questions have arisen about a possible pathophysiological role of dietary glycation compounds. Several studies assessed the metabolic fate of dietary glycation compounds into blood and urine, but studies about saliva are rare. We investigated here the dietary impact on salivary concentrations of the individual Maillard reaction products (MRPs) N-ε-fructosyllysine, N-ε-carboxymethyllysine (CML), N-ε-carboxyethyllysine (CEL), pyrraline (Pyr), and methylglyoxal-derived hydroimidazolone 1 (MG-H1). Quantitation was performed using stable isotope dilution analysis (LC-MS/MS). We describe here, that a low MRP diet causes a significant lowering of salivary levels of Pyr from 1.9 ± 0.4 ng/mL to below the LOD and MG-H1 from 2.5 ± 1.5 ng/mL to 0.7 ± 1.8 ng/mL. An impact on the salivary protein fraction was not observed. Furthermore, salivary Pyr and MG-H1 levels are modified in a time-dependent manner after a dietary intervention containing 1.2 mg Pyr and 4.7 mg MG-H1. An increase in mean salivary concentrations to 1.4 ng/mL Pyr and 4.2 ng/mL MG-H1 was observed within 30-210 min. In conclusion, saliva may be a useful tool for monitoring glycation compound levels by using Pyr and MG-H1 as biomarkers for intake of heated food.

20.
Environ Microbiol ; 24(7): 3229-3241, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621031

RESUMO

Thermal food processing leads to the formation of advanced glycation end products (AGE) such as Nε -carboxymethyllysine (CML). Accordingly, these non-canonical amino acids are an important part of the human diet. However, CML is only partially decomposed by our gut microbiota and up to 30% are excreted via faeces and, hence, enter the environment. In frame of this study, we isolated a soil bacterium that can grow on CML as well as its higher homologue Nε -carboxyethyllysine (CEL) as sole source of carbon. Bioinformatic analyses upon whole-genome sequencing revealed a subspecies of Pseudomonas asiatica, which we named 'bavariensis'. We performed a metabolite screening of P. asiatica subsp. bavariensis str. JM1 grown either on CML or CEL and identified N-carboxymethylaminopentanoic acid and N-carboxyethylaminopentanoic acid respectively. We further detected α-aminoadipate as intermediate in the metabolism of CML. These reaction products suggest two routes of degradation: While CEL seems to be predominantly processed from the α-C-atom, decomposition of CML can also be initiated with cleavage of the carboxymethyl group and under the release of acetate. Thus, our study provides novel insights into the metabolism of two important AGEs and how these are processed by environmental bacteria.


Assuntos
Produtos Finais de Glicação Avançada , Solo , Bactérias/metabolismo , Manipulação de Alimentos , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Pseudomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...