Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 72(3): 643-659, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38031824

RESUMO

Long-term modifications of astrocyte function and morphology are well known to occur in epilepsy. They are implicated in the development and manifestation of the disease, but the relevant mechanisms and their pathophysiological role are not firmly established. For instance, it is unclear how quickly the onset of epileptic activity triggers astrocyte morphology changes and what the relevant molecular signals are. We therefore used two-photon excitation fluorescence microscopy to monitor astrocyte morphology in parallel to the induction of epileptiform activity. We uncovered astrocyte morphology changes within 10-20 min under various experimental conditions in acute hippocampal slices. In vivo, induction of status epilepticus resulted in similarly altered astrocyte morphology within 30 min. Further analysis in vitro revealed a persistent volume reduction of peripheral astrocyte processes triggered by induction of epileptiform activity. In addition, an impaired diffusion within astrocytes and within the astrocyte network was observed, which most likely is a direct consequence of the astrocyte remodeling. These astrocyte morphology changes were prevented by inhibition of the Rho GTPase RhoA and of the Rho-associated kinase (ROCK). Selective deletion of ROCK1 but not ROCK2 from astrocytes also prevented the morphology change after induction of epileptiform activity and reduced epileptiform activity. Together these observations reveal that epileptic activity triggers a rapid ROCK1-dependent astrocyte morphology change, which is mechanistically linked to the strength of epileptiform activity. This suggests that astrocytic ROCK1 signaling is a maladaptive response of astrocytes to the onset of epileptic activity.


Assuntos
Epilepsia , Estado Epiléptico , Humanos , Astrócitos , Quinases Associadas a rho , Hipocampo
2.
Mol Neurobiol ; 60(6): 3413-3422, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36862288

RESUMO

Increasing evidence suggests that inflammation promotes epileptogenesis. TAK1 is a central enzyme in the upstream pathway of NF-κB and is known to play a central role in promoting neuroinflammation in neurodegenerative diseases. Here, we investigated the cellular role of TAK1 in experimental epilepsy. C57Bl6 and transgenic mice with inducible and microglia-specific deletion of Tak1 (Cx3cr1CreER:Tak1fl/fl) were subjected to the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE). Immunohistochemical staining was performed to quantify different cell populations. The epileptic activity was monitored by continuous telemetric electroencephalogram (EEG) recordings over a period of 4 weeks. The results show that TAK1 was activated predominantly in microglia at an early stage of kainate-induced epileptogenesis. Tak1 deletion in microglia resulted in reduced hippocampal reactive microgliosis and a significant decrease in chronic epileptic activity. Overall, our data suggest that TAK1-dependent microglial activation contributes to the pathogenesis of chronic epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Camundongos , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Ácido Caínico , MAP Quinase Quinase Quinases/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
Glia ; 71(2): 168-186, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373840

RESUMO

Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.


Assuntos
Epilepsia do Lobo Temporal , Estado Epiléptico , Camundongos , Animais , Humanos , Epilepsia do Lobo Temporal/patologia , Astrócitos/patologia , Fator de Necrose Tumoral alfa , Microglia/patologia , Hipocampo/patologia , Convulsões/patologia , Estado Epiléptico/patologia , Ácido Caínico/toxicidade , Modelos Animais de Doenças , Camundongos Knockout
4.
Neurochem Res ; 48(4): 1091-1099, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36244037

RESUMO

Astrocytes play a dual role in the brain. On the one hand, they are active signaling partners of neurons and can for instance control synaptic transmission and its plasticity. On the other hand, they fulfill various homeostatic functions such as clearance of glutamate and K+ released from neurons. The latter is for instance important for limiting neuronal excitability. Therefore, an impairment or failure of glutamate and K+ clearance will lead to increased neuronal excitability, which could trigger or aggravate brain diseases such as epilepsy, in which neuronal hyperexcitability plays a role. Experimental data indicate that astrocytes could have such a causal role in epilepsy, but the role of astrocytes as initiators of epilepsy and the relevant mechanisms are under debate. In this overview, we will discuss the potential mechanisms with focus on K+ clearance, glutamate uptake and homoeostasis and related mechanisms, and the evidence for their causative role in epilepsy.


Assuntos
Astrócitos , Epilepsia , Humanos , Astrócitos/fisiologia , Encéfalo , Transmissão Sináptica , Ácido Glutâmico
5.
Glia ; 70(4): 748-767, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981861

RESUMO

Alzheimer pathology is accompanied by astrogliosis. Reactive astrocytes surrounding amyloid plaques may directly affect neuronal communication, and one of the mechanisms by which astrocytes impact neuronal function is by affecting K+ homeostasis. Here we studied, using hippocampal slices from 9-month-old Alzheimer mice (APP/PS1) and wild-type littermates, whether astrocyte function is changed by analyzing Kir4.1 expression and function and astrocyte coupling in astrocytes surrounding amyloid-ß plaques. Immunohistochemical analysis of Kir4.1 protein in the dentate gyrus revealed localized increases in astrocytes surrounding amyloid-ß plaque deposits. We subsequently focused on changes in astrocyte function by using patch-clamp slice electrophysiology on both plaque- and non-plaque associated astrocytes to characterize general membrane properties. We found that Ba2+ -sensitive Kir4.1 conductance in astrocytes surrounding plaques was not affected by changes in Kir4.1 protein expression. Additional analysis of astrocyte gap junction coupling efficiency in the dentate gyrus revealed no apparent changes. Quantification of basic features of glutamatergic transmission to granule cells did not indicate disturbed neuronal communication in the dentate gyrus of APP/PS1 mice. Together, these results suggest that astrocytes in the dentate gyrus of APP/PS1 mice maintain their ability to buffer extracellular K+ and attempt to rectify imbalances in K+ concentration to maintain normal neuronal and synaptic function, possibly by localized increases in Kir4.1 protein expression. Our earlier transcriptomic data indicated that chronically activated astrocytes lose their neuronal support function. Here we show that, despite localized increased Kir4.1 protein expression, astrocyte Kir4.1 channel dysfunction is likely not involved in the pathogenesis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Placa Amiloide , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Giro Denteado/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Placa Amiloide/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização
6.
Epilepsia ; 62(7): 1569-1583, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955001

RESUMO

OBJECTIVE: Growing evidence suggests that dysfunctional astrocytes are crucial players in the development of mesial temporal lobe epilepsy (MTLE). Using a mouse model closely recapitulating key alterations of chronic human MTLE with hippocampal sclerosis, here we asked whether death of astrocytes contributes to the initiation of the disease and investigated potential underlying molecular mechanisms. METHODS: Antibody staining was combined with confocal imaging and semiquantitative real-time polymerase chain reaction analysis to identify markers of different cellular death mechanisms between 4 h and 3 days after epilepsy induction. RESULTS: Four hours after kainate-mediated induction of status epilepticus (SE), we found a significant reduction in the density of astrocytes in the CA1 stratum radiatum (SR) of the ipsilateral hippocampus. This reduction was transient, as within the next 3 days, astrocyte cell numbers recovered to the initial values, which was accompanied by enhanced proliferation. Four hours after SE induction, a small proportion of astrocytes in the ipsilateral CA1 SR expressed autophagy-related genes and proteins, whereas we did not find astrocytes positive for cleaved caspase 3 or terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick-end labeling, ruling out apoptosis-related astrocytic death. Importantly, at the same early time point post-SE, many astrocytes in the ipsilateral CA1 SR showed strong expression of genes encoding pro-necroptosis factors, including receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Phosphorylation of MLKL (pMLKL), formation of necrosome complexes composed of RIPK3 and pMLKL, and translocation of pMLKL to the nucleus and to the plasma membrane were often observed in astrocytes of the ipsilateral hippocampus 4 h post-SE. SIGNIFICANCE: The present study revealed that astrocytes die shortly after induction of SE. Our expression data and immunohistochemistry suggest that necroptosis and autophagy contribute to astrocytic death. These findings help to better understand how dysfunctional and pathological remodeling of astrocytes contributes to the initiation of temporal lobe epilepsy.


Assuntos
Astrócitos/patologia , Região CA1 Hipocampal/patologia , Morte Celular , Epilepsia/patologia , Animais , Autofagia/genética , Caspase 3/genética , Contagem de Células , Proliferação de Células , Convulsivantes , Epilepsia/induzido quimicamente , Ácido Caínico , Masculino , Camundongos , Microglia/patologia , Proteínas Quinases/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia
7.
Front Neurol ; 12: 660591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025561

RESUMO

Blood-brain barrier (BBB) dysfunction following brain insults has been associated with the development and progression of focal epilepsy, although the underlying molecular mechanisms are not fully elucidated yet. Activation of transforming growth factor beta (TGFß) signaling in astrocytes by extravasated albumin impairs the ability of astrocytes to properly interact with neurons, eventually leading to epileptiform activity. We used the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) to gain further insights into the role of BBB leakage in status epilepticus (SE)-induced epileptogenesis. Immunohistochemical examination revealed pronounced albumin extravasation already 4 h after SE induction. Astrocytes were virtually devoid of albumin immunoreactivity (IR), indicating the lack of uptake by this time point. Inhibition of the TGFß pathway by the specific TGFß receptor 1 (TGFßR1) kinase inhibitor IPW-5371 did not prevent seizure-induced reduction of astrocytic gap junction coupling. Thus, loss of coupling, which is thought to play a causative role in triggering TLE-HS, is most likely not mediated by extravasated albumin. Continuous telemetric EEG recordings and video monitoring performed over a period of 4 weeks after epilepsy induction revealed that inhibition of the TGFß pathway during the initial phase of epileptogenesis slightly attenuated acute and chronic epileptiform activity, but did not reduce the extent of HS. Together, these data indicate that albumin extravasation due to increased BBB permeability and TGFß pathway activation during the first hours after SE induction are not significantly involved in initiating TLE.

8.
Cells ; 9(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708718

RESUMO

A decrease in synaptic plasticity and/or a change in excitation/inhibition balance have been suggested as mechanisms underlying major depression disorder. However, given the crucial role of astrocytes in balancing synaptic function, particular attention should be given to the contribution of astrocytes in these mechanisms, especially since previous findings show that astrocytes are affected and exhibit reactive-like features in depression. Moreover, it has been shown that reactive astrocytes increase the synthesis and release of GABA, contributing significantly to tonic GABA inhibition. In this study we found decreased plasticity and increased tonic GABA inhibition in the prelimbic area in acute slices from the medial prefrontal cortex in the Flinders Sensitive Line (FSL) rat model of depression. The tonic inhibition can be reduced by either blocking astrocytic intracellular Ca2+ signaling or by reducing astrocytic GABA through inhibition of the synthesizing enzyme MAO-B with Selegiline. Blocking GABA synthesis also restores the impaired synaptic plasticity in the FSL prefrontal cortex, providing a new antidepressant mechanism of Selegiline.


Assuntos
Astrócitos/metabolismo , Depressão/fisiopatologia , Plasticidade Neuronal , Córtex Pré-Frontal/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Atrofia , Modelos Animais de Doenças , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Selegilina/farmacologia
9.
Glia ; 68(10): 2136-2147, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32240558

RESUMO

The astroglial gap junctional network formed by connexin (Cx) channels plays a central role in regulating neuronal activity and network synchronization. However, its involvement in the development and progression of epilepsy is not yet understood. Loss of interastrocytic gap junction (GJ) coupling has been observed in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy (MTLE) and in mouse models of MTLE, leading to the suggestion that it plays a causative role in the pathogenesis. To further elucidate this clinically relevant question, we investigated consequences of astrocyte disconnection on the time course and severity of kainate-induced MTLE with hippocampal sclerosis (HS) by comparing mice deficient for astrocytic Cx proteins with wild-type mice (WT). Continuous telemetric EEG recordings and video monitoring performed over a period of 4 weeks after epilepsy induction revealed substantially higher seizure and interictal spike activity during the chronic phase in Cx deficient versus WT mice, while the severity of status epilepticus was not different. Immunohistochemical analysis showed that, despite the elevated chronic seizure activity, astrocyte disconnection did not aggravate the severity of HS. Indeed, the extent of CA1 pyramidal cell loss was similar between the experimental groups, while astrogliosis, granule cell dispersion, angiogenesis, and microglia activation were even reduced in Cx deficient as compared to WT mice. Interestingly, seizure-induced neurogenesis in the adult dentate gyrus was also independent of astrocytic Cxs. Together, our data indicate that constitutive loss of GJ coupling between astrocytes promotes neuronal hyperexcitability and attenuates seizure-induced histopathological outcomes.


Assuntos
Astrócitos/metabolismo , Conexinas/deficiência , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Deleção de Genes , Ácido Caínico/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Conexinas/genética , Epilepsia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
10.
Front Neurol ; 11: 614923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391173

RESUMO

An imbalance of excitation and inhibition has been associated with the pathophysiology of epilepsy. Loss of GABAergic interneurons and/or synaptic inhibition has been shown in various epilepsy models and in human epilepsy. Despite this loss, several studies reported preserved or increased tonic GABAA receptor-mediated currents in epilepsy, raising the question of the source of the inhibitory transmitter. We used the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) to answer this question. In our model we observed profound loss of interneurons in the sclerotic hippocampal CA1 region and dentate gyrus already 5 days after epilepsy induction. Consistent with the literature, the absence of interneurons caused no reduction of tonic inhibition of CA1 pyramidal neurons. In dentate granule cells the inhibitory currents were even increased in epileptic tissue. Intriguingly, immunostaining of brain sections from epileptic mice with antibodies against GABA revealed strong and progressive accumulation of the neurotransmitter in reactive astrocytes. Pharmacological inhibition of the astrocytic GABA transporter GAT3 did not affect tonic inhibition in the sclerotic hippocampus, suggesting that this transporter is not responsible for astrocytic GABA accumulation or release. Immunostaining further indicated that both decarboxylation of glutamate and putrescine degradation accounted for the increased GABA levels in reactive astrocytes. Together, our data provide evidence that the preserved tonic inhibitory currents in the epileptic brain are mediated by GABA overproduction and release from astrocytes. A deeper understanding of the underlying mechanisms may lead to new strategies for antiepileptic drug therapy.

11.
Horm Behav ; 89: 113-120, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28062232

RESUMO

There are sex differences associated with schizophrenia, as women exhibit later onset of the disorder, less severe symptomatology, and better response to antipsychotic medications. Estrogens are thought to play a role in these sex differences; estrogens facilitate the effects of antipsychotic medications to reduce the positive symptoms of schizophrenia, but it remains unclear whether estrogens protect against the cognitive symptoms of this disorder. Amphetamine sensitization is used to model some symptoms of schizophrenia in rats, including cognitive deficits like excessive perseveration and slower reversal learning. In this experiment female rats were administered a sensitizing regimen of amphetamine to mimic these cognitive symptoms. They were ovariectomized and administered either low or high estradiol replacement as well as chronic administration of the antipsychotic haloperidol, and were assessed in tests of perseveration and reversal learning. Results of these experiments demonstrated that, in amphetamine-sensitized rats, estradiol alone does not affect perseveration or reversal learning. However, low estradiol facilitates a 0.25mg/day dose of haloperidol to reduce perseveration and improve reversal learning. Combined high estradiol and 0.25mg/day haloperidol has no effect on perseveration or reversal learning, but high estradiol facilitates the effects of 0.13mg/day haloperidol to reduce perseveration and improve reversal learning. Thus, in amphetamine-sensitized female rats, 0.25mg/day haloperidol only improved perseveration and reversal learning when estradiol was low, while 0.13mg/day haloperidol only improved these cognitive processes when estradiol was high. These findings suggest that estradiol facilitates the effects of haloperidol to improve perseveration and reversal learning in a dose-dependent manner.


Assuntos
Anfetamina/farmacologia , Estradiol/farmacologia , Haloperidol/farmacologia , Reversão de Aprendizagem/efeitos dos fármacos , Psicologia do Esquizofrênico , Comportamento Estereotipado/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...