Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 168(3)2024 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-38888996

RESUMO

This work describes a valuable and reproducible method for generating optically clear bovine ovary-derived hydrogels that support in vitro murine follicle growth. These techniques are the foundation in which follicle growth dynamics and matrisome protein composition may be correlated to reveal the influence of matrisome proteins on folliculogenesis.


Assuntos
Hidrogéis , Folículo Ovariano , Animais , Feminino , Hidrogéis/química , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Bovinos , Camundongos , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/metabolismo
2.
Bioengineering (Basel) ; 10(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38002411

RESUMO

PURPOSE: There are currently limited treatment options for aniridia. In this context, 3D printed iris implants may provide a cost-effective, cosmetically acceptable alternative for patients with aniridia. The purpose of this study was to develop a proof-of-concept workflow for manufacturing 3D printed iris implants using a silicone ink palette that aesthetically matches iris shades, identified in slit lamp images. METHODS: Slit lamp iris photos from 11 healthy volunteers (3 green; 4 blue; 4 brown) were processed using k-means binning analyses to identify two or three prominent colors each. Candidate silicone inks were created by precisely combining pigments. A crowdsourcing survey software was used to determine color matches between the silicone ink swatches and three prominent iris color swatches in 2 qualifying and 11 experimental workflows. RESULTS: In total, 54 candidate silicone inks (20 brown; 16 green; 18 blue) were developed and analyzed. Survey answers from 29 individuals that had passed the qualifying workflow were invited to identify "best matches" between the prominent iris colors and the silicone inks. From this color-match data, brown, blue, and green prototype artificial irises were printed with the silicone ink that aesthetically matched the three prominent colors. The iris was printed using a simplified three-layer five-branch starburst design at scale (12.8 mm base disc, with 3.5 mm pupil). CONCLUSIONS: This proof-of-concept workflow produced color-matched silicone prosthetic irises at scale from a panel of silicone inks using prominent iris colors extracted from slit lamp images. Future work will include printing a more intricate iris crypt design and testing for biocompatibility.

4.
Chembiochem ; 24(11): e202300116, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37069799

RESUMO

While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cisteína , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
5.
Cell Chem Biol ; 29(10): 1470-1481.e31, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070758

RESUMO

Targeted protein degradation (TPD) uses small molecules to recruit E3 ubiquitin ligases into the proximity of proteins of interest, inducing ubiquitination-dependent degradation. A major bottleneck in the TPD field is the lack of accessible E3 ligase ligands for developing degraders. To expand the E3 ligase toolbox, we sought to convert the Kelch-like ECH-associated protein 1 (KEAP1) inhibitor KI696 into a recruitment handle for several targets. While we were able to generate KEAP1-recruiting degraders of BET family and murine focal adhesion kinase (FAK), we discovered that the target scope of KEAP1 was narrow, as targets easily degraded using a cereblon (CRBN)-recruiting degrader were refractory to KEAP1-mediated degradation. Linking the KEAP1-binding ligand to a CRBN-binding ligand resulted in a molecule that induced degradation of KEAP1 but not CRBN. In sum, we characterize tool compounds to explore KEAP1-mediated ubiquitination and delineate the challenges of exploiting new E3 ligases for generating bivalent degraders.


Assuntos
Fator 2 Relacionado a NF-E2 , Ubiquitina-Proteína Ligases , Camundongos , Animais , Ubiquitina-Proteína Ligases/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Fator 2 Relacionado a NF-E2/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Ubiquitinas/metabolismo
6.
Nat Rev Drug Discov ; 21(12): 881-898, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36008483

RESUMO

Covalent drugs have been used to treat diseases for more than a century, but tools that facilitate the rational design of covalent drugs have emerged more recently. The purposeful addition of reactive functional groups to existing ligands can enable potent and selective inhibition of target proteins, as demonstrated by the covalent epidermal growth factor receptor (EGFR) and Bruton's tyrosine kinase (BTK) inhibitors used to treat various cancers. Moreover, the identification of covalent ligands through 'electrophile-first' approaches has also led to the discovery of covalent drugs, such as covalent inhibitors for KRAS(G12C) and SARS-CoV-2 main protease. In particular, the discovery of KRAS(G12C) inhibitors validates the use of covalent screening technologies, which have become more powerful and widespread over the past decade. Chemoproteomics platforms have emerged to complement covalent ligand screening and assist in ligand discovery, selectivity profiling and target identification. This Review showcases covalent drug discovery milestones with emphasis on the lessons learned from these programmes and how an evolving toolbox of covalent drug discovery techniques facilitates success in this field.


Assuntos
Tratamento Farmacológico da COVID-19 , Inibidores de Proteínas Quinases , Humanos , Descoberta de Drogas/métodos , Ligantes , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , SARS-CoV-2 , Relação Estrutura-Atividade
7.
Nat Chem Biol ; 18(4): 412-421, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35210618

RESUMO

Many diseases are driven by proteins that are aberrantly ubiquitinated and degraded. These diseases would be therapeutically benefited by targeted protein stabilization (TPS). Here we present deubiquitinase-targeting chimeras (DUBTACs), heterobifunctional small molecules consisting of a deubiquitinase recruiter linked to a protein-targeting ligand, to stabilize the levels of specific proteins degraded in a ubiquitin-dependent manner. Using chemoproteomic approaches, we discovered the covalent ligand EN523 that targets a non-catalytic allosteric cysteine C23 in the K48-ubiquitin-specific deubiquitinase OTUB1. We showed that a DUBTAC consisting of our EN523 OTUB1 recruiter linked to lumacaftor, a drug used to treat cystic fibrosis that binds ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR), robustly stabilized ΔF508-CFTR protein levels, leading to improved chloride channel conductance in human cystic fibrosis bronchial epithelial cells. We also demonstrated stabilization of the tumor suppressor kinase WEE1 in hepatoma cells. Our study showcases covalent chemoproteomic approaches to develop new induced proximity-based therapeutic modalities and introduces the DUBTAC platform for TPS.


Assuntos
Fibrose Cística , Quimera/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/uso terapêutico , Humanos , Ligantes , Ubiquitina/metabolismo
8.
J Am Chem Soc ; 144(2): 701-708, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34994556

RESUMO

Proteolysis-targeting chimeras (PROTACs), heterobifunctional compounds that consist of protein-targeting ligands linked to an E3 ligase recruiter, have arisen as a powerful therapeutic modality for targeted protein degradation (TPD). Despite the popularity of TPD approaches in drug discovery, only a small number of E3 ligase recruiters are available for the >600 E3 ligases that exist in human cells. Here, we have discovered a cysteine-reactive covalent ligand, EN106, that targets FEM1B, an E3 ligase recently discovered as the critical component of the cellular response to reductive stress. By targeting C186 in FEM1B, EN106 disrupts recognition of the key reductive stress substrate of FEM1B, FNIP1. We further establish that EN106 can be used as a covalent recruiter for FEM1B in TPD applications by demonstrating that a PROTAC linking EN106 to the BET bromodomain inhibitor JQ1 or the kinase inhibitor dasatinib leads to the degradation of BRD4 and BCR-ABL, respectively. Our study showcases a covalent ligand that targets a natural E3 ligase-substrate binding site and highlights the utility of covalent ligand screening in expanding the arsenal of E3 ligase recruiters suitable for TPD applications.


Assuntos
Acetamidas/química , Proteínas de Ciclo Celular/metabolismo , Proteólise , Complexos Ubiquitina-Proteína Ligase/metabolismo , Animais , Azepinas/química , Sítios de Ligação , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cisteína/química , Dasatinibe/química , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Triazóis/química , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Complexos Ubiquitina-Proteína Ligase/genética
9.
Angew Chem Int Ed Engl ; 60(29): 15905-15911, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33915015

RESUMO

Aberrant activation of FGFR signaling occurs in many cancers, and ATP-competitive FGFR inhibitors have received regulatory approval. Despite demonstrating clinical efficacy, these inhibitors exhibit dose-limiting toxicity, potentially due to a lack of selectivity amongst the FGFR family and are poorly tolerated. Here, we report the discovery and characterization of DGY-09-192, a bivalent degrader that couples the pan-FGFR inhibitor BGJ398 to a CRL2VHL E3 ligase recruiting ligand, which preferentially induces FGFR1&2 degradation while largely sparing FGFR3&4. DGY-09-192 exhibited two-digit nanomolar DC50 s for both wildtype FGFR2 and several FGFR2-fusions, resulting in degradation-dependent antiproliferative activity in representative gastric cancer and cholangiocarcinoma cells. Importantly, DGY-09-192 induced degradation of a clinically relevant FGFR2 fusion protein in a xenograft model. Taken together, we demonstrate that DGY-09-192 has potential as a prototype FGFR degrader.


Assuntos
Descoberta de Drogas , Proteólise/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Humanos
10.
Trends Biotechnol ; 39(8): 824-837, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33593603

RESUMO

Recent research in tissue engineering and regenerative medicine has elucidated the importance of the matrisome. The matrisome, effectively the skeleton of an organ, provides physical and biochemical cues that drive important processes such as differentiation, proliferation, migration, and cellular morphology. Leveraging the matrisome to control these and other tissue-specific processes will be key to developing transplantable bioprosthetics. In the ovary, the physical and biological properties of the matrisome have been implicated in controlling the important processes of follicle quiescence and folliculogenesis. This expanding body of knowledge is being applied in conjunction with new manufacturing processes to enable increasingly complex matrisome engineering, moving closer to emulating tissue structure, composition, and subsequent functions which can be applied to a variety of tissue engineering applications.


Assuntos
Microambiente Celular , Matriz Extracelular , Ovário , Próteses e Implantes , Engenharia Tecidual , Matriz Extracelular/metabolismo , Feminino , Humanos , Próteses e Implantes/tendências , Medicina Regenerativa
11.
Cell Chem Biol ; 28(1): 4-13.e17, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32966806

RESUMO

MYC is a major oncogenic transcriptional driver of most human cancers that has remained intractable to direct targeting because much of MYC is intrinsically disordered. Here, we have performed a cysteine-reactive covalent ligand screen to identify compounds that could disrupt the binding of MYC to its DNA consensus sequence in vitro and also impair MYC transcriptional activity in situ in cells. We have identified a covalent ligand, EN4, that targets cysteine 171 of MYC within a predicted intrinsically disordered region of the protein. We show that EN4 directly targets MYC in cells, reduces MYC and MAX thermal stability, inhibits MYC transcriptional activity, downregulates multiple MYC transcriptional targets, and impairs tumorigenesis. We also show initial structure-activity relationships of EN4 and identify compounds that show improved potency. Overall, we identify a unique ligandable site within an intrinsically disordered region of MYC that leads to inhibition of MYC transcriptional activity.


Assuntos
Cisteína/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Células Cultivadas , Cisteína/metabolismo , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
12.
Biochem Biophys Res Commun ; 533(4): 1298-1302, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33046246

RESUMO

Reacted with methylglyoxal (MGO), murine Aß(1-40) (mAß) produced significantly less superoxide anion (O2•-) compared to human Aß(1-40) (hAß). The reactions of MGO with mAß(R13H), hAß(H13F), Nα-acetyl-l-lysine, and Nα-acetyl-l-arginine implied that the lack of His13 in mAß prohibits its Lys16 residue from reacting to produce cross-linked reaction products and O2•-. Our results suggest that murine brains are under less oxidative stress than human brains, which may be one of the reasons why rodents do not develop AD-like symptoms, and which provides further insight into a chemical mechanism for the development of AD in humans.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Aldeído Pirúvico/química , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Fragmentos de Peptídeos/metabolismo , Aldeído Pirúvico/metabolismo , Superóxidos/metabolismo
13.
Front Mol Biosci ; 7: 81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509799

RESUMO

Unregulated Src activity promotes malignant processes in cancer, but no Src-directed targeted therapies are used clinically, possibly because early Src inhibitors produce off-target effects leading to toxicity. Improved selective Src inhibitors may enable Src-directed therapies. Previously, we reported an irreversible Src inhibitor, DGY-06-116, based on the hybridization of dasatinib and a promiscuous covalent kinase probe SM1-71. Here, we report biochemical and biophysical characterization of this compound. An x-ray co-crystal structure of DGY-06-116: Src shows a covalent interaction with the kinase p-loop and occupancy of the back hydrophobic kinase pocket, explaining its high potency, and selectivity. However, a reversible analog also shows similar potency. Kinetic analysis shows a slow inactivation rate compared to other clinically approved covalent kinase inhibitors, consistent with a need for p-loop movement prior to covalent bond formation. Overall, these results suggest that a strong reversible interaction is required to allow sufficient time for the covalent reaction to occur. Further optimization of the covalent linker may improve the kinetics of covalent bond formation.

14.
J Med Chem ; 63(4): 1624-1641, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31935084

RESUMO

SRC is a major regulator of many signaling pathways and contributes to cancer development. However, development of a selective SRC inhibitor has been challenging, and FDA-approved SRC inhibitors, dasatinib and bosutinib, are multitargeted kinase inhibitors. Here, we describe our efforts to develop a selective SRC covalent inhibitor by targeting cysteine 277 on the P-loop of SRC. Using a promiscuous covalent kinase inhibitor (CKI) SM1-71 as a starting point, we developed covalent inhibitor 15a, which discriminates SRC from other covalent targets of SM1-71 including TAK1 and FGFR1. As an irreversible covalent inhibitor, compound 15a exhibited sustained inhibition of SRC signaling both in vitro and in vivo. Moreover, 15a exhibited potent antiproliferative effects in nonsmall cell lung cancer cell lines harboring SRC activation, thus providing evidence that this approach may be promising for further drug development efforts.


Assuntos
Anilidas/farmacologia , Cisteína/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Quinases da Família src/antagonistas & inibidores , Domínio AAA , Sequência de Aminoácidos , Anilidas/síntese química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/síntese química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Quinases da Família src/química
15.
Sci Rep ; 9(1): 20001, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882863

RESUMO

Premature ovarian insufficiency (POI) affects approximately 1% of women. We aim to understand the ovarian microenvironment, including the extracellular matrix (ECM) and associated proteins (matrisome), and its role in controlling folliculogenesis. We mapped the composition of the matrisome of porcine ovaries through the cortical compartment, where quiescent follicles reside and the medullary compartment, where the larger follicles grow and mature. To do this we sliced the ovaries, uniformly in two anatomical planes, enriched for matrisome proteins and performed bottom-up shotgun proteomic analyses. We identified 42 matrisome proteins that were significantly differentially expressed across depths, and 11 matrisome proteins that have not been identified in previous ovarian protein analyses. We validated these data for nine proteins and confirmed compartmental differences with a second processing method. Here we describe a processing and proteomic analysis pipeline that revealed spatial differences and matrisome protein candidates that may influence folliculogenesis.


Assuntos
Compartimento Celular , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteômica/métodos , Animais , Cromatografia Líquida/métodos , Feminino , Reação em Cadeia da Polimerase/métodos , Insuficiência Ovariana Primária/metabolismo , Suínos , Espectrometria de Massas em Tandem/métodos
16.
J Biol Inorg Chem ; 22(8): 1211-1222, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29038915

RESUMO

Extensive research has linked the amyloid-beta (Aß) peptide to neurological dysfunction in Alzheimer's disease (AD). Insoluble Aß plaques in the AD patient brain contain high concentrations of advanced glycation end-products (AGEs) as well as transition metal ions. This research elucidated the roles of Aß, sugars, and Cu2+ in the oxidative stress mechanism of AD at the molecular level. Mass spectral (MS) analysis of the reactions of Aß with two representative sugars, ribose-5-phosphate (R5P) and methylglyoxal (MG), revealed Lys-16 and Arg-5 as the primary glycation sites. Quantitative analysis of superoxide [Formula: see text] production by a cyt c assay showed that Lys-16 generated four times as much [Formula: see text] as Arg-5. Lys-16 and Arg-5 in Aß1-40 are both adjacent to histidine residues, which are suggested to catalyze glycation. Additionally, Lys-16 is close to the central hydrophobic core (Leu-17-Ala-21) and to His-13, both of which are known to lower the pKa of the residue, leading to increased deprotonation of the amine and an enhanced glycation reactivity compared to Arg-5. Gel electrophoresis results indicated that all three components of AD plaques-Aß1-40, sugars, and Cu2+-are necessary for DNA damage. It is concluded that the glycation of Aß1-40 with sugars generates significant amounts of [Formula: see text], owing to the rapid glycation of Lys-16 and Arg-5. In the presence of Cu2+, [Formula: see text] converts to hydroxyl radical (HO·), the source of oxidative stress in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Arginina/metabolismo , Cobre/farmacologia , Lisina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sequência de Aminoácidos , Citocromos c/metabolismo , Dano ao DNA , Nucleotídeos de Desoxiguanina/metabolismo , Glicosilação/efeitos dos fármacos , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/metabolismo , Modelos Moleculares , Oxirredução/efeitos dos fármacos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA