Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(14): 2449-2463.e13, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402367

RESUMO

Transcription factors (TFs) orchestrate the gene expression programs that define each cell's identity. The canonical TF accomplishes this with two domains, one that binds specific DNA sequences and the other that binds protein coactivators or corepressors. We find that at least half of TFs also bind RNA, doing so through a previously unrecognized domain with sequence and functional features analogous to the arginine-rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function by promoting the dynamic association between DNA, RNA, and TF on chromatin. TF-RNA interactions are a conserved feature important for vertebrate development and disrupted in disease. We propose that the ability to bind DNA, RNA, and protein is a general property of many TFs and is fundamental to their gene regulatory function.


Assuntos
RNA , Fatores de Transcrição , Fatores de Transcrição/metabolismo , RNA/metabolismo , Sítios de Ligação , Ligação Proteica , DNA/genética
2.
Nat Commun ; 13(1): 7522, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473871

RESUMO

Insulin receptor (IR) signaling is central to normal metabolic control and is dysregulated in metabolic diseases such as type 2 diabetes. We report here that IR is incorporated into dynamic clusters at the plasma membrane, in the cytoplasm and in the nucleus of human hepatocytes and adipocytes. Insulin stimulation promotes further incorporation of IR into these dynamic clusters in insulin-sensitive cells but not in insulin-resistant cells, where both IR accumulation and dynamic behavior are reduced. Treatment of insulin-resistant cells with metformin, a first-line drug used to treat type 2 diabetes, can rescue IR accumulation and the dynamic behavior of these clusters. This rescue is associated with metformin's role in reducing reactive oxygen species that interfere with normal dynamics. These results indicate that changes in the physico-mechanical features of IR clusters contribute to insulin resistance and have implications for improved therapeutic approaches.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Receptor de Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina
3.
Dev Cell ; 57(14): 1776-1788.e8, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35809564

RESUMO

A multitude of cellular processes involve biomolecular condensates, which has led to the suggestion that diverse pathogenic mutations may dysregulate condensates. Although proof-of-concept studies have identified specific mutations that cause condensate dysregulation, the full scope of the pathological genetic variation that affects condensates is not yet known. Here, we comprehensively map pathogenic mutations to condensate-promoting protein features in putative condensate-forming proteins and find over 36,000 pathogenic mutations that plausibly contribute to condensate dysregulation in over 1,200 Mendelian diseases and 550 cancers. This resource captures mutations presently known to dysregulate condensates, and experimental tests confirm that additional pathological mutations do indeed affect condensate properties in cells. These findings suggest that condensate dysregulation may be a pervasive pathogenic mechanism underlying a broad spectrum of human diseases, provide a strategy to identify proteins and mutations involved in pathologically altered condensates, and serve as a foundation for mechanistic insights into disease and therapeutic hypotheses.


Assuntos
Proteínas , Humanos , Mutação/genética
4.
Nature ; 606(7913): 406-413, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650434

RESUMO

All multicellular organisms rely on differential gene transcription regulated by genomic enhancers, which function through cofactors that are recruited by transcription factors1,2. Emerging evidence suggests that not all cofactors are required at all enhancers3-5, yet whether these observations reflect more general principles or distinct types of enhancers remained unknown. Here we categorized human enhancers by their cofactor dependencies and show that these categories provide a framework to understand the sequence and chromatin diversity of enhancers and their roles in different gene-regulatory programmes. We quantified enhancer activities along the entire human genome using STARR-seq6 in HCT116 cells, following the rapid degradation of eight cofactors. This analysis identified different types of enhancers with distinct cofactor requirements, sequences and chromatin properties. Some enhancers were insensitive to the depletion of the core Mediator subunit MED14 or the bromodomain protein BRD4 and regulated distinct transcriptional programmes. In particular, canonical Mediator7 seemed dispensable for P53-responsive enhancers, and MED14-depleted cells induced endogenous P53 target genes. Similarly, BRD4 was not required for the transcription of genes that bear CCAAT boxes and a TATA box (including histone genes and LTR12 retrotransposons) or for the induction of heat-shock genes. This categorization of enhancers through cofactor dependencies reveals distinct enhancer types that can bypass broadly utilized cofactors, which illustrates how alternative ways to activate transcription separate gene expression programmes and provide a conceptual framework to understand enhancer function and regulatory specificity.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Humanos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
RNA ; 28(1): 52-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772787

RESUMO

Macroscopic membraneless organelles containing RNA such as the nucleoli, germ granules, and the Cajal body have been known for decades. These biomolecular condensates are liquid-like bodies that can be formed by a phase transition. Recent evidence has revealed the presence of similar microscopic condensates associated with the transcription of genes. This brief article summarizes thoughts about the importance of condensates in the regulation of transcription and how RNA molecules, as components of such condensates, control the synthesis of RNA. Models and experimental data suggest that RNAs from enhancers facilitate the formation of a condensate that stabilizes the binding of transcription factors and accounts for a burst of transcription at the promoter. Termination of this burst is pictured as a nonequilibrium feedback loop where additional RNA destabilizes the condensate.


Assuntos
Condensados Biomoleculares/química , DNA/química , Proteínas de Ligação a RNA/química , RNA/química , Fatores de Transcrição/química , Transcrição Gênica , Sítios de Ligação , Condensados Biomoleculares/metabolismo , Compartimento Celular , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Corpos Enovelados/química , Corpos Enovelados/metabolismo , DNA/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Retroalimentação Fisiológica , Grânulos de Ribonucleoproteínas de Células Germinativas/química , Grânulos de Ribonucleoproteínas de Células Germinativas/metabolismo , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
6.
Ann N Y Acad Sci ; 1506(1): 118-141, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34791665

RESUMO

The human transcriptome contains many types of noncoding RNAs, which rival the number of protein-coding species. From long noncoding RNAs (lncRNAs) that are over 200 nucleotides long to piwi-interacting RNAs (piRNAs) of only 20 nucleotides, noncoding RNAs play important roles in regulating transcription, epigenetic modifications, translation, and cell signaling. Roles for noncoding RNAs in disease mechanisms are also being uncovered, and several species have been identified as potential drug targets. On May 11-14, 2021, the Keystone eSymposium "Noncoding RNAs: Biology and Applications" brought together researchers working in RNA biology, structure, and technologies to accelerate both the understanding of RNA basic biology and the translation of those findings into clinical applications.


Assuntos
Congressos como Assunto/tendências , Epigênese Genética/genética , Marcação de Genes/tendências , RNA não Traduzido/administração & dosagem , RNA não Traduzido/genética , Relatório de Pesquisa , Animais , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Marcação de Genes/métodos , Humanos , MicroRNAs/administração & dosagem , MicroRNAs/genética , RNA Longo não Codificante/administração & dosagem , RNA Longo não Codificante/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Pequeno RNA não Traduzido/administração & dosagem , Pequeno RNA não Traduzido/genética , Transdução de Sinais/genética
7.
Cell ; 184(1): 207-225.e24, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33333019

RESUMO

Regulation of biological processes typically incorporates mechanisms that initiate and terminate the process and, where understood, these mechanisms often involve feedback control. Regulation of transcription is a fundamental cellular process where the mechanisms involved in initiation have been studied extensively, but those involved in arresting the process are poorly understood. Modeling of the potential roles of RNA in transcriptional control suggested a non-equilibrium feedback control mechanism where low levels of RNA promote condensates formed by electrostatic interactions whereas relatively high levels promote dissolution of these condensates. Evidence from in vitro and in vivo experiments support a model where RNAs produced during early steps in transcription initiation stimulate condensate formation, whereas the burst of RNAs produced during elongation stimulate condensate dissolution. We propose that transcriptional regulation incorporates a feedback mechanism whereby transcribed RNAs initially stimulate but then ultimately arrest the process.


Assuntos
Retroalimentação Fisiológica , RNA/genética , Transcrição Gênica , Animais , Complexo Mediador/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/metabolismo , RNA/biossíntese , Eletricidade Estática
8.
Nature ; 586(7829): 440-444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32698189

RESUMO

Methyl CpG binding protein 2 (MeCP2) is a key component of constitutive heterochromatin, which is crucial for chromosome maintenance and transcriptional silencing1-3. Mutations in the MECP2 gene cause the progressive neurodevelopmental disorder Rett syndrome3-5, which is associated with severe mental disability and autism-like symptoms that affect girls during early childhood. Although previously thought to be a dense and relatively static structure1,2, heterochromatin is now understood to exhibit properties consistent with a liquid-like condensate6,7. Here we show that MeCP2 is a dynamic component of heterochromatin condensates in cells, and is stimulated by DNA to form liquid-like condensates. MeCP2 contains several domains that contribute to the formation of condensates, and mutations in MECP2 that lead to Rett syndrome disrupt the ability of MeCP2 to form condensates. Condensates formed by MeCP2 selectively incorporate and concentrate heterochromatin cofactors rather than components of euchromatic transcriptionally active condensates. We propose that MeCP2 enhances the separation of heterochromatin and euchromatin through its condensate partitioning properties, and that disruption of condensates may be a common consequence of mutations in MeCP2 that cause Rett syndrome.


Assuntos
Heterocromatina/metabolismo , Deficiência Intelectual/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Imunidade Adaptativa , Animais , Feminino , Imunidade Inata , Deficiência Intelectual/patologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Síndrome de Rett/genética
9.
Science ; 368(6497): 1386-1392, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32554597

RESUMO

The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate biomolecules with distinct physicochemical properties. Here, we investigated whether condensates concentrate small-molecule cancer therapeutics such that their pharmacodynamic properties are altered. We found that antineoplastic drugs become concentrated in specific protein condensates in vitro and that this occurs through physicochemical properties independent of the drug target. This behavior was also observed in tumor cells, where drug partitioning influenced drug activity. Altering the properties of the condensate was found to affect the concentration and activity of drugs. These results suggest that selective partitioning and concentration of small molecules within condensates contributes to drug pharmacodynamics and that further understanding of this phenomenon may facilitate advances in disease therapy.


Assuntos
Antineoplásicos/farmacologia , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Mol Cell ; 76(5): 753-766.e6, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31563432

RESUMO

The gene expression programs that define the identity of each cell are controlled by master transcription factors (TFs) that bind cell-type-specific enhancers, as well as signaling factors, which bring extracellular stimuli to these enhancers. Recent studies have revealed that master TFs form phase-separated condensates with the Mediator coactivator at super-enhancers. Here, we present evidence that signaling factors for the WNT, TGF-ß, and JAK/STAT pathways use their intrinsically disordered regions (IDRs) to enter and concentrate in Mediator condensates at super-enhancers. We show that the WNT coactivator ß-catenin interacts both with components of condensates and DNA-binding factors to selectively occupy super-enhancer-associated genes. We propose that the cell-type specificity of the response to signaling is mediated in part by the IDRs of the signaling factors, which cause these factors to partition into condensates established by the master TFs and Mediator at genes with prominent roles in cell identity.


Assuntos
Elementos Facilitadores Genéticos/genética , Complexo Mediador/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Complexo Mediador/fisiologia , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad3/metabolismo , Proteínas da Superfamília de TGF-beta/metabolismo , Transcrição Gênica , Via de Sinalização Wnt , beta Catenina/metabolismo
11.
Nature ; 572(7770): 543-548, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391587

RESUMO

The synthesis of pre-mRNA by RNA polymerase II (Pol II) involves the formation of a transcription initiation complex, and a transition to an elongation complex1-4. The large subunit of Pol II contains an intrinsically disordered C-terminal domain that is phosphorylated by cyclin-dependent kinases during the transition from initiation to elongation, thus influencing the interaction of the C-terminal domain with different components of the initiation or the RNA-splicing apparatus5,6. Recent observations suggest that this model provides only a partial picture of the effects of phosphorylation of the C-terminal domain7-12. Both the transcription-initiation machinery and the splicing machinery can form phase-separated condensates that contain large numbers of component molecules: hundreds of molecules of Pol II and mediator are concentrated in condensates at super-enhancers7,8, and large numbers of splicing factors are concentrated in nuclear speckles, some of which occur at highly active transcription sites9-12. Here we investigate whether the phosphorylation of the Pol II C-terminal domain regulates the incorporation of Pol II into phase-separated condensates that are associated with transcription initiation and splicing. We find that the hypophosphorylated C-terminal domain of Pol II is incorporated into mediator condensates and that phosphorylation by regulatory cyclin-dependent kinases reduces this incorporation. We also find that the hyperphosphorylated C-terminal domain is preferentially incorporated into condensates that are formed by splicing factors. These results suggest that phosphorylation of the Pol II C-terminal domain drives an exchange from condensates that are involved in transcription initiation to those that are involved in RNA processing, and implicates phosphorylation as a mechanism that regulates condensate preference.


Assuntos
Complexo Mediador/química , Complexo Mediador/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Splicing de RNA , Transcrição Gênica , Animais , Linhagem Celular , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Humanos , Complexo Mediador/genética , Camundongos , Fosforilação , Domínios Proteicos , RNA Polimerase II/genética , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
12.
Mol Cell ; 75(5): 905-920.e6, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422875

RESUMO

Variable levels of DNA methylation have been reported at tissue-specific differential methylation regions (DMRs) overlapping enhancers, including super-enhancers (SEs) associated with key cell identity genes, but the mechanisms responsible for this intriguing behavior are not well understood. We used allele-specific reporters at the endogenous Sox2 and Mir290 SEs in embryonic stem cells and found that the allelic DNA methylation state is dynamically switching, resulting in cell-to-cell heterogeneity. Dynamic DNA methylation is driven by the balance between DNA methyltransferases and transcription factor binding on one side and co-regulated with the Mediator complex recruitment and H3K27ac level changes at regulatory elements on the other side. DNA methylation at the Sox2 and the Mir290 SEs is independently regulated and has distinct consequences on the cellular differentiation state. Dynamic allele-specific DNA methylation at the two SEs was also seen at different stages in preimplantation embryos, revealing that methylation heterogeneity occurs in vivo.


Assuntos
Diferenciação Celular/fisiologia , Metilação de DNA/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
13.
Dis Model Mech ; 11(11)2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30266803

RESUMO

Xenografts of the hematopoietic system are extremely useful as disease models and for translational research. Zebrafish xenografts have been widely used to monitor blood cancer cell dissemination and homing due to the optical clarity of embryos and larvae, which allow unrestricted in vivo visualization of migratory events. Here, we have developed a xenotransplantation technique that transiently generates hundreds of hematopoietic tissue chimeric embryos by transplanting murine bone marrow cells into zebrafish blastulae. In contrast to previous methods, this procedure allows mammalian cell integration into the fish developmental hematopoietic program, which results in chimeric animals containing distinct phenotypes of murine blood cells in both circulation and the hematopoietic niche. Murine cells in chimeric animals express antigens related to (i) hematopoietic stem and progenitor cells, (ii) active cell proliferation and (iii) myeloid cell lineages. We verified the utility of this method by monitoring zebrafish chimeras during development using in vivo non-invasive imaging to show novel murine cell behaviors, such as homing to primitive and definitive hematopoietic tissues, dynamic hematopoietic cell and hematopoietic niche interactions, and response to bacterial infection. Overall, transplantation into the zebrafish blastula provides a useful method that simplifies the generation of numerous chimeric animals and expands the range of murine cell behaviors that can be studied in zebrafish chimeras. In addition, integration of murine cells into the host hematopoietic system during development suggests highly conserved molecular mechanisms of hematopoiesis between zebrafish and mammals.This article has an associated First Person interview with the first author of the paper.


Assuntos
Quimera/embriologia , Embrião de Mamíferos/fisiologia , Embrião não Mamífero/fisiologia , Hematopoese , Interações Hospedeiro-Patógeno , Peixe-Zebra/embriologia , Animais , Infecções Bacterianas/patologia , Blástula/transplante , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Fusão Celular , Linhagem da Célula , Movimento Celular , Rastreamento de Células , Corantes/metabolismo , Feminino , Larva/citologia , Masculino , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Transplante Heterólogo , Peixe-Zebra/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...