Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(13): 9525-9534, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513118

RESUMO

Single-photon sources are essential building blocks for the development of photonic quantum technology. Regarding potential practical application, an on-demand electrically driven quantum-light emitter on a chip is notably crucial for photonic integrated circuits. Here, we propose functionalized single-walled carbon nanotube field-effect transistors as a promising solid-state quantum-light source by demonstrating photon antibunching behavior via electrical excitation. The sp3 quantum defects were formed on the surface of (7, 5) carbon nanotubes by 3,5-dichlorophenyl functionalization, and individual carbon nanotubes were wired to graphene electrode pairs. Filtered electroluminescent defect-state emission at 77 K was coupled into a Hanbury Brown and Twiss experiment setup, and single-photon emission was observed by performing second-order correlation function measurements. We discuss the dependence of the intensity correlation measurement on electrical power and emission wavelength, highlighting the challenges of performing such measurements while simultaneously analyzing acquired data. Our results indicate a route toward room-temperature electrically triggered single-photon emission.

2.
Phys Chem Chem Phys ; 26(10): 8408-8418, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407473

RESUMO

Collision-induced dissociation and high-resolution cyclic ion mobility mass spectrometry, along with quantum chemical calculations and trajectory simulations, were used to compare the structures of isolated [MAu24(CCR)18]2-, M = Ni, Pd, or Pt, and their associated fragment ions. The three different alkynyl ligand-stabilized (CCR, R = 3,5-(CF3)2C6H3), transition metal-doped, gold cluster dianions showed mutually resolvable collision cross sections (CCS), which were ordered consistently with their molecular structures from X-ray crystallography. All three [MAu24(CCR)18]2- species fragment by sequential diyne loss to form [MAu24(CCR)18-n]2-, with n up to 12. The resultant fragment isomer distributions are significantly n- and M-dependent, and hint at a process involving concerted elimination of adjacent ligands. In particular [NiAu24(CCR)18]2- also fragments to generate alkyne-oligomers, an inference supported by the parallel observation of precursor dianion isomerization as collision energy is increased.

3.
Nat Commun ; 14(1): 3933, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402723

RESUMO

Emerging photonic information processing systems require chip-level integration of controllable nanoscale light sources at telecommunication wavelengths. Currently, substantial challenges remain in the dynamic control of the sources, the low-loss integration into a photonic environment, and in the site-selective placement at desired positions on a chip. Here, we overcome these challenges using heterogeneous integration of electroluminescent (EL), semiconducting carbon nanotubes (sCNTs) into hybrid two dimensional - three dimensional (2D-3D) photonic circuits. We demonstrate enhanced spectral line shaping of the EL sCNT emission. By back-gating the sCNT-nanoemitter we achieve full electrical dynamic control of the EL sCNT emission with high on-off ratio and strong enhancement in the telecommunication band. Using nanographene as a low-loss material to electrically contact sCNT emitters directly within a photonic crystal cavity enables highly efficient EL coupling without compromising the optical quality of the cavity. Our versatile approach paves the way for controllable integrated photonic circuits.

4.
ACS Nano ; 16(8): 11742-11754, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35732039

RESUMO

Individual single-walled carbon nanotubes with covalent sidewall defects have emerged as a class of photon sources whose photoluminescence spectra can be tailored by the carbon nanotube chirality and the attached functional group/molecule. Here we present electroluminescence spectroscopy data from single-tube devices based on (7, 5) carbon nanotubes, functionalized with dichlorobenzene molecules, and wired to graphene electrodes. We observe electrically generated, defect-induced emissions that are controllable by electrostatic gating and strongly red-shifted compared to emissions from pristine nanotubes. The defect-induced emissions are assigned to excitonic and trionic recombination processes by correlating electroluminescence excitation maps with electrical transport and photoluminescence data. At cryogenic conditions, additional gate-dependent emission lines appear, which are assigned to phonon-assisted hot-exciton electroluminescence from quasi-levels. Similar results were obtained with functionalized (6, 5) nanotubes. We also compare functionalized (7, 5) electroluminescence data with photoluminescence of pristine and functionalized (7, 5) nanotubes redox-doped using gold(III) chloride solution. This work shows that electroluminescence excitation is selective toward neutral defect-state configurations with the lowest transition energy, which in combination with gate-control over neutral versus charged defect-state emission leads to high spectral purity.

5.
ACS Nano ; 15(3): 4699-4709, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626282

RESUMO

Helical wrapping by conjugated polymer has been demonstrated as a powerful tool for the sorting of single-walled carbon nanotubes (SWCNTs) according to their electronic type, chiral index, and even handedness. However, a method of one-step extraction of left-handed (M) and right-handed (P) semiconducting SWCNTs (s-SWCNTs) with subsequent cleavage of the polymer has not yet been published. In this work, we designed and synthesized one pair of acid cleavable polyfluorenes with defined chirality for handedness separation of s-SWCNTs from as-produced nanotubes. Each monomer contains a chiral center on the fluorene backbone in the 9-position, and the amino and carbonyl groups in the 2- and 7-positions maintain the head-to-tail regioselective polymerization resulting in polyimines with strictly all-(R) or all-(S) configuration. The obtained chiral polymers exhibit a strong recognition ability toward left- or right-handed s-SWCNTs from commercially available CoMoCAT SWCNTs with a sorting process requiring only bath sonication and centrifugation. Interestingly, the remaining polymer on each single nanotube, which helps to prevent aggregation, does not interfere with the circular dichroism signals from the nanotube at all. Therefore, we observed all four interband transition peaks (E11, E22, E33, E44) in the circular dichroism (CD) spectra of the still wrapped optically enriched left-handed and right-handed (6,5) SWCNTs in toluene. Binding energies obtained from molecular dynamics simulations were consistent with our experimental results and showed a significant preference for one specific handedness from each chiral polymer. Moreover, the imine bonds along the polymer chains enable the release of the nanotubes upon acid treatment. After s-SWNT separation, the polymer can be decomposed into monomers and be cleanly removed under mild acidic conditions, yielding dispersant-free handedness sorted s-SWNTs. The monomers can be almost quantitatively recovered to resynthesize the chiral polymer. This approach enables high selective isolation of polymer-free s-SWNT enantiomers for their further applications in carbon nanotube (CNT) devices.

6.
ACS Nano ; 14(3): 2709-2717, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-31920075

RESUMO

Single-walled carbon nanotubes as emerging quantum-light sources may fill a technological gap in silicon photonics due to their potential use as near-infrared, electrically driven, classical or nonclassical emitters. Unlike in photoluminescence, where nanotubes are excited with light, electrical excitation of single tubes is challenging and heavily influenced by device fabrication, architecture, and biasing conditions. Here we present electroluminescence spectroscopy data of ultra-short-channel devices made from (9,8) carbon nanotubes emitting in the telecom band. Emissions are stable under current biasing, and no enhanced suppression is observed down to 10 nm gap size. Low-temperature electroluminescence spectroscopy data also reported exhibit cold emission and line widths down to 2 meV at 4 K. Electroluminescence excitation maps give evidence that carrier recombination is the mechanism for light generation in short channels. Excitonic and trionic emissions can be switched on and off by gate voltage, and corresponding emission efficiency maps were compiled. Insights are gained into the influence of acoustic phonons on the line width, absence of intensity saturation and exciton-exciton annihilation, environmental effects such as dielectric screening and strain on the emission wavelength, and conditions to suppress hysteresis and establish optimum operation conditions.

7.
Phys Chem Chem Phys ; 21(35): 18877-18892, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31436767

RESUMO

We present high-resolution trapped ion mobility spectrometry (TIMS) measurements for fullerene ions in molecular nitrogen. Three different charge states were studied (monocations, monoanions and dianions) with fullerenes ranging in size from C60 to C150. Ions were prepared by either electrospray ionization (ESI, for mono- and dianions) or by atmospheric pressure chemical ionization (APCI, for monocations) of a preformed fullerene soot extract solution. We demonstrate that TIMS allows to identify (and separate) constituent isomers in favorable cases. Using DFT calculations based on known condensed phase structures and trajectory method (TM) calculations we can reproduce the experimental TIMSCCSN2 for fullerenes up to C108 to within 0.5%. Using candidate structures based on quantum chemical predictions, we have also obtained structural information for fullerenes C110-C150- a size range not previously accessed in condensed phase studies. We find that soluble fullerenes in this size have near-spherical rather than tubular structures. While the TM programs presently available for CCS modelling do a remarkably good job at describing the ion mobility of high (and even giant) fullerenes we observe a slight but systematic size-dependent deviation between TIMSCCSN2 values and our best computational fits which may reflect systematic bonding changes as the cage size increases.

8.
J Am Soc Mass Spectrom ; 30(10): 1973-1980, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31240563

RESUMO

We have used trapped ion mobility spectrometry (TIMS) to obtain highly accurate experimental collision cross sections (CCS) for the fullerene C80- and the endohedral metallofullerenes La2@C80-, Sc3N@C80-, and Er3N@C80- in molecular nitrogen. The CCS values of the endohedral fullerenes are 0.2% larger than that of the empty cage. Using a combination of density functional theory and trajectory calculations, we were able to reproduce these experimental findings theoretically. Two effects are discussed that contribute to the CCS differences: (i) a small increase in fullerene cage size upon endohedral doping and (ii) charge transfer from the encapsulated moieties to the cage thus increasing the attractive charge-induced dipole interaction between the (endohedral) fullerene ion and the nitrogen bath gas molecules.

9.
Langmuir ; 35(10): 3790-3796, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30758209

RESUMO

The length of a carbon nanotube is an important dimension that has to be adjusted to the requirements of an experiment or application, e.g., through sorting methods. So far, atomic force microscopy (AFM) has been the method of choice for measuring length distributions, despite being an ex situ method with apparent shortcomings. In this work, we explore analytical ultracentrifugation (AUC) as an in situ method for measuring the length distribution of polymer-wrapped (7, 5) single-walled carbon nanotubes dispersed in toluene. This is an AUC study of nanotubes in nonaqueous media, the preferred media for nanotubes used in device fabrication. In AUC, the temporally and spatially dependent change in optical absorption of a sample is measured under centrifugation. The resulting sedimentation curves can be deconvoluted with a standard data processing procedure (SEDFIT), to yield the sedimentation coefficient distribution. However, the conversion of the sedimentation coefficient distribution into a length distribution is nontrivial and requires finding a suitable model for the nanotube friction coefficient. Also, since AUC is based on optical absorption, it yields a volume distribution and not a number distribution as obtained from AFM reference data. By meeting these challenges and finding a surprisingly simple empirical flexible-chain-like model to describe the sedimentation behavior of one specific chiral structure, we suggest AUC as a viable method for measuring in situ nanotube length distributions of nonaqueous dispersions.

10.
Nat Nanotechnol ; 12(12): 1176-1182, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28967894

RESUMO

Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

11.
Nanoscale ; 9(31): 11205-11213, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28749520

RESUMO

Monochiral (7,5) single walled carbon nanotubes (SWCNTs) are integrated into a field effect transistor device in which the built-in electric field at the nanotube/metal contact allows for exciton separation under illumination. Variable wavelength spectroscopy and 2D surface mapping of devices consisting of 10-20 nanotubes are performed in the visible region and a strong correlation between the nanotube's second optical transition (S22) and the photocurrent is found. After integration, the SWCNTs are non-covalently modified with three different fluorescent dye molecules with off-resonant absorption maxima at 532 nm, 565 nm, and 610 nm. The dyes extend the absorption properties of the nanotube and contribute to the photocurrent. This approach holds promise for the development of photo-detectors and for applications in photovoltaics and biosensing.

12.
Chem Sci ; 8(3): 2235-2240, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507679

RESUMO

With the aim to synthesize soluble cluster molecules, the silver salt of (4-(tert-butyl)phenyl)methanethiol [AgSCH2C6H4t Bu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag115S34(SCH2C6H4t Bu)47(dpph)6] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31P/109Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution.

13.
Beilstein J Nanotechnol ; 8: 38-44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28144563

RESUMO

Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.

14.
Nanotechnology ; 27(37): 375706, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27504810

RESUMO

The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

15.
ACS Nano ; 10(2): 1888-95, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26792404

RESUMO

Samples of highly enriched semiconducting SWCNTs with average diameters of 1.35 nm have been prepared by combining PODOF polymer wrapping with size-exclusion chromatography. The purity of the material was determined to be >99.7% from the transfer characteristics of short-channel transistors comprising densely aligned sc-SWCNTs. The transistors have a hole mobility of up to 297 cm(2)V(-1) s(-1) and an On/Off ratio as high as 2 × 10(8).

16.
ACS Nano ; 9(4): 3849-57, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25758564

RESUMO

In this work, we demonstrate the application of the gel permeation technique to the sorting of double-walled carbon nanotubes (DWCNTs) according to their outer wall electronic type. Our method uses Sephacryl S-200 gel and yields sorted fractions of DWCNTs with impurities removed and highly enriched in nanotubes with either metallic (M) or semiconducting (S) outer walls. The prepared fractions are fully characterized using optical absorption spectroscopy, transmission electron microscopy, and atomic force microscopy, and the entire procedure is monitored in real time using process Raman analysis. The sorted DWCNTs are then integrated into single nanotube field effect transistors, allowing detailed electronic measurement of the transconductance properties of the four unique inner@outer wall combinations of S@S, S@M, M@S, and M@M.

17.
ACS Nano ; 8(7): 6756-64, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24896840

RESUMO

In this report we demonstrate the separation of raw carbon nanotube material into fractions of double-walled (DWCNTs) and single-walled carbon nanotubes (SWCNTs). Our method utilizes size exclusion chromatography with Sephacryl gel S-200 and yielded two distinct fractions of single- and double-walled nanotubes with average diameters of 0.93 ± 0.03 and 1.64 ± 0.15 nm, respectively. The presented technique is easily scalable and offers an alternative to traditional density gradient ultracentrifugation methods. CNT fractions were characterized by atomic force microscopy and Raman and absorption spectroscopy as well as transmission electron microscopy.

18.
Phys Chem Chem Phys ; 16(13): 6225-32, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24562665

RESUMO

Supramolecular guest-host complexes comprising various azaporphines stacked in a coordination nanoprism consisting of tris(4-pyridyl)triazines as panels, 1,4-bis(pyridyl)benzenes as pillars and (en)Pd as hinges were synthesized according to the procedure of Fujita and coworkers and characterized as ions in the gas-phase by high-resolution electrospray ionization mass spectrometry and collision induced dissociation as well as in solution by analytical ultracentrifugation. Apart from fully filled nanoprisms we have also prepared and observed partially filled as well as empty congeners in aqueous solutions. Upon mixing room temperature solutions of two types of nanoprisms, we observe that azaporphine guest exchange reactions occur on a timescale of minutes, indicating that the formation of the guest-host complexes is reversible.


Assuntos
Gases/química , Nanoestruturas/química , Porfirinas/química , Soluções/química , Compostos Aza/química , Centrifugação , Cobre/química , Metaloporfirinas/química , Espectrometria de Massas por Ionização por Electrospray
19.
ACS Nano ; 8(2): 1817-26, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24460395

RESUMO

A gel permeation chromatography system is used to separate aqueous sodium dodecyl sulfate suspensions of single-walled carbon nanotubes (SWCNTs). This automated procedure requires no precentrifugation, is scalable, and is found to yield monochiral SWCNT fractions of semiconducting SWCNTs with a purity of 61-95%. Unsorted and resulting monochiral fractions are characterized using optical absorption and photoluminescence spectroscopy.

20.
ACS Macro Lett ; 3(1): 10-15, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35632861

RESUMO

Fourteen different "hairy-rod" conjugated polymers, 9,9-dioctylfluorene derivatives entailing 1,2,3-triazole, azomethine, ethynyle, biphenyle, stilbene, and azobenzene lateral units, are synthesized via modular conjugation and are systematically investigated with respect to their ability to selectively disperse SWCNTs. Four polymers of the azomethine type, with unprecedented selectivity toward dispersing (8,7), (7,6), and (9,5) SWCNT species, have been identified. In particular, azomethine polymers, herein applied for the first time for SWCNT dispersion, have been evidenced to be very effective in the highly selective solubilization of SWCNTs. The experimentally observed selectivity results are unambiguously supported by molecular dynamics simulations that account for the geometrical properties and deformation energy landscape of the polymer. Specifically, the calculations accurately and with high precision predict the experimentally observed selectivity for the (7,6) and (9,5) conformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...