Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 15(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037073

RESUMO

The lack of genetically diverse preclinical animal models in basic biology and efficacy testing has been cited as a potential cause of failure in clinical trials. We developed and characterized five diverse RAG1 null mouse strains as models that allow xenografts to grow. In these strains, we characterized the growth of breast cancer, leukemia and glioma cell lines. We found a wide range of growth characteristics that were far more dependent on strain than tumor type. For the breast cancer cell line, we characterized the spectrum of xenograft/tumor growth at structural, histological, cellular and molecular levels across each strain, and found that each strain captures unique structural components of the stroma. Furthermore, we showed that the increase in tumor-infiltrating myeloid CD45+ cells and the amount of circulating cytokine IL-6 and chemokine KC (also known as CXCL1) is associated with a higher tumor size in different strains. This resource is available to study established human xenografts, as well as difficult-to-xenograft tumors and growth of hematopoietic stems cells, and to decipher the role of myeloid cells in the development of spontaneous cancers.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Knockout , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Vis Exp ; (175)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34542534

RESUMO

Female fertility and reproductive lifespan depend on the quality and quantity of the ovarian oocyte reserve. An estimated 80% of female germ cells entering meiotic prophase I are eliminated during Fetal Oocyte Attrition (FOA) and the first week of postnatal life. Three major mechanisms regulate the number of oocytes that survive during development and establish the ovarian reserve in females entering puberty. In the first wave of oocyte loss, 30-50% of the oocytes are eliminated during early FOA, a phenomenon that is attributed to high Long interspersed nuclear element-1 (LINE-1) expression. The second wave of oocyte loss is the elimination of oocytes with meiotic defects by a meiotic quality checkpoint. The third wave of oocyte loss occurs perinatally during primordial follicle formation when some oocytes fail to form follicles. It remains unclear what regulates each of these three waves of oocyte loss and how they shape the ovarian reserve in either mice or humans. Immunofluorescence and 3D visualization have opened a new avenue to image and analyze oocyte development in the context of the whole ovary rather than in less informative 2D sections. This article provides a comprehensive protocol for whole ovary immunostaining and optical clearing, yielding preparations for imaging using multiphoton microscopy and 3D modeling using commercially available software. It shows how this method can be used to show the dynamics of oocyte attrition during ovarian development in C57BL/6J mice and quantify oocyte loss during the three waves of oocyte elimination. This protocol can be applied to prenatal and early postnatal ovaries for oocyte visualization and quantification, as well as other quantitative approaches. Importantly, the protocol was strategically developed to accommodate high-throughput, reliable, and repeatable processing that can meet the needs in toxicology, clinical diagnostics, and genomic assays of ovarian function.


Assuntos
Reserva Ovariana , Ovário , Animais , Feminino , Imunofluorescência , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Oócitos , Gravidez , Maturidade Sexual
3.
mBio ; 10(2)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040246

RESUMO

The global spread of Plasmodium falciparum chloroquine resistance transporter (PfCRT) variant haplotypes earlier caused the widespread loss of chloroquine (CQ) efficacy. In Asia, novel PfCRT mutations that emerged on the Dd2 allelic background have recently been implicated in high-level resistance to piperaquine, and N326S and I356T have been associated with genetic backgrounds in which resistance emerged to artemisinin derivatives. By analyzing large-scale genome sequencing data, we report that the predominant Asian CQ-resistant Dd2 haplotype is undetectable in Africa. Instead, the GB4 and previously unexplored Cam783 haplotypes predominate, along with wild-type, drug-sensitive PfCRT that has reemerged as the major haplotype. To interrogate how these alleles impact drug susceptibility, we generated pfcrt-modified isogenic parasite lines spanning the mutational interval between GB4 and Dd2, which includes Cam783 and involves amino acid substitutions at residues 326 and 356. Relative to Dd2, the GB4 and Cam783 alleles were observed to mediate lower degrees of resistance to CQ and the first-line drug amodiaquine, while resulting in higher growth rates. These findings suggest that differences in growth rates, a surrogate of parasite fitness, influence selection in the context of African infections that are frequently characterized by high transmission rates, mixed infections, increased immunity, and less recourse to treatment. We also observe that the Asian Dd2 allele affords partial protection against piperaquine yet does not directly impact artemisinin efficacy. Our results can help inform the regional recommendations of antimalarials, whose activity is influenced by and, in certain cases, enhanced against select PfCRT variant haplotypes.IMPORTANCE Our study defines the allelic distribution of pfcrt, an important mediator of multidrug resistance in Plasmodium falciparum, in Africa and Asia. We leveraged whole-genome sequence analysis and gene editing to demonstrate how current drug combinations can select different allelic variants of this gene and shape region-specific parasite population structures. We document the ability of PfCRT mutations to modulate parasite susceptibility to current antimalarials in dissimilar, pfcrt allele-specific ways. This study underscores the importance of actively monitoring pfcrt genotypes to identify emerging patterns of multidrug resistance and help guide region-specific treatment options.


Assuntos
Resistência a Múltiplos Medicamentos , Aptidão Genética , Genótipo , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , África/epidemiologia , Ásia/epidemiologia , Frequência do Gene , Genética Populacional , Malária Falciparum/epidemiologia , Proteínas Mutantes/genética , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação
4.
J Infect Dis ; 216(4): 468-476, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28931241

RESUMO

Background: Amplified copy number in the plasmepsin II/III genes within Plasmodium falciparum has been associated with decreased sensitivity to piperaquine. To examine this association and test whether additional loci might also contribute, we performed a genome-wide association study of ex vivo P. falciparum susceptibility to piperaquine. Methods: Plasmodium falciparum DNA from 183 samples collected primarily from Cambodia was genotyped at 33716 genome-wide single nucleotide polymorphisms (SNPs). Linear mixed models and random forests were used to estimate associations between parasite genotypes and piperaquine susceptibility. Candidate polymorphisms were evaluated for their association with dihydroartemisinin-piperaquine treatment outcomes in an independent dataset. Results: Single nucleotide polymorphisms on multiple chromosomes were associated with piperaquine 90% inhibitory concentrations (IC90) in a genome-wide analysis. Fine-mapping of genomic regions implicated in genome-wide analyses identified multiple SNPs in linkage disequilibrium with each other that were significantly associated with piperaquine IC90, including a novel mutation within the gene encoding the P. falciparum chloroquine resistance transporter, PfCRT. This mutation (F145I) was associated with dihydroartemisinin-piperaquine treatment failure after adjusting for the presence of amplified plasmepsin II/III, which was also associated with decreased piperaquine sensitivity. Conclusions: Our data suggest that, in addition to plasmepsin II/III copy number, other loci, including pfcrt, may also be involved in piperaquine resistance.


Assuntos
Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Quinolinas/farmacologia , Artemisininas/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Camboja , Variações do Número de Cópias de DNA , DNA de Protozoário/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Concentração Inibidora 50 , Desequilíbrio de Ligação , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Modelos de Riscos Proporcionais , Proteínas de Protozoários/metabolismo , Sensibilidade e Especificidade , Falha de Tratamento
5.
Nat Microbiol ; 2(10): 1403-1414, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28808258

RESUMO

Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Quinolinas/farmacologia , Sequência de Aminoácidos , Animais , Anopheles , Sistemas CRISPR-Cas/genética , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Combinação de Medicamentos , Resistência a Medicamentos , Endocitose/efeitos dos fármacos , Etanolaminas/farmacologia , Fluorenos/farmacologia , Edição de Genes , Células HEK293 , Heme , Hemoglobinas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Lumefantrina , Malária/transmissão , Malária Falciparum/sangue , Malária Falciparum/transmissão , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Oocistos/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Quinolinas/química
6.
mBio ; 8(3)2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487425

RESUMO

Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ) in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ) resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90) or 50% parasite killing (50% lethal dose [LD50]). This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite's acidic digestive vacuole as the primary mode of both the bis-aminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates.IMPORTANCE The global agenda to eliminate malaria depends on the continued success of artemisinin-based combination therapies (ACTs), which target the asexual blood stages of the intracellular parasite Plasmodium Partial resistance to artemisinin, however, is now established in Southeast Asia, exposing the partner drugs to increased selective pressure. Plasmodium falciparum resistance to the first-line partner piperaquine (PPQ) is now spreading rapidly in Cambodia, resulting in clinical treatment failures. Here, we report that a variant form of the Plasmodium falciparum chloroquine resistance transporter, harboring a C101F mutation edited into the chloroquine (CQ)-resistant Dd2 isoform prevalent in Asia, can confer PPQ resistance in cultured parasites. This was accompanied by a loss of CQ resistance. Biochemical assays showed that PPQ, like CQ, inhibits the detoxification of reactive heme that is formed by parasite-mediated catabolism of host hemoglobin. We propose that novel PfCRT variants emerging in the field could contribute to a multigenic basis of PPQ resistance.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Quinolinas/farmacologia , Antimaláricos/química , Artemisininas/uso terapêutico , Camboja , Edição de Genes , Humanos , Dose Letal Mediana , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação/efeitos dos fármacos , Plasmodium falciparum/genética , Isoformas de Proteínas , Proteínas de Protozoários/metabolismo , Quinolinas/química
7.
Sci Transl Med ; 9(387)2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446690

RESUMO

As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Aminopiridinas/uso terapêutico , Antimaláricos/uso terapêutico , Sulfonas/uso terapêutico , Aminopiridinas/farmacologia , Animais , Antimaláricos/farmacologia , Feminino , Malária/tratamento farmacológico , Malária/enzimologia , Masculino , Camundongos , Camundongos SCID , Testes de Sensibilidade Parasitária , Plasmodium/efeitos dos fármacos , Plasmodium/patogenicidade , Sulfonas/farmacologia
8.
PLoS Pathog ; 12(11): e1005976, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27832198

RESUMO

Southeast Asia is an epicenter of multidrug-resistant Plasmodium falciparum strains. Selective pressures on the subcontinent have recurrently produced several allelic variants of parasite drug resistance genes, including the P. falciparum chloroquine resistance transporter (pfcrt). Despite significant reductions in the deployment of the 4-aminoquinoline drug chloroquine (CQ), which selected for the mutant pfcrt alleles that halted CQ efficacy decades ago, the parasite pfcrt locus is continuously evolving. This is highlighted by the presence of a highly mutated allele, Cam734 pfcrt, which has acquired the singular ability to confer parasite CQ resistance without an associated fitness cost. Here, we used pfcrt-specific zinc-finger nucleases to genetically dissect this allele in the pathogenic setting of asexual blood-stage infection. Comparative analysis of drug resistance and growth profiles of recombinant parasites that express Cam734 or variants thereof, Dd2 (the most common Southeast Asian variant), or wild-type pfcrt, revealed previously unknown roles for PfCRT mutations in modulating parasite susceptibility to multiple antimalarial agents. These results were generated in the GC03 strain, used in multiple earlier pfcrt studies, and might differ in natural isolates harboring this allele. Results presented herein show that Cam734-mediated CQ resistance is dependent on the rare A144F mutation that has not been observed beyond Southeast Asia, and reveal distinct impacts of this and other Cam734-specific mutations on CQ resistance and parasite growth rates. Biochemical assays revealed a broad impact of mutant PfCRT isoforms on parasite metabolism, including nucleoside triphosphate levels, hemoglobin catabolism and disposition of heme, as well as digestive vacuole volume and pH. Results from our study provide new insights into the complex molecular basis and physiological impact of PfCRT-mediated antimalarial drug resistance, and inform ongoing efforts to characterize novel pfcrt alleles that can undermine the efficacy of first-line antimalarial drug regimens.


Assuntos
Resistência a Medicamentos/genética , Aptidão Genética/genética , Malária Falciparum/genética , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/genética , Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Genótipo , Humanos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Mutação , Vacúolos/metabolismo
9.
Nat Commun ; 7: 11553, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189525

RESUMO

Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes.


Assuntos
Antimaláricos , Artemisininas , Resistência Microbiana a Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Quimioterapia Combinada , Geografia , Haplótipos , Malária/tratamento farmacológico , Malária/parasitologia , Mutação
10.
Mol Pharmacol ; 89(6): 678-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048953

RESUMO

Malaria is a critical public health issue in the tropical world, causing extensive morbidity and mortality. Infection by unicellular, obligate intracellular Plasmodium parasites causes malaria. The emergence of resistance to current antimalarial drugs necessitates the development of novel therapeutics. A potential novel drug target is the purine import transporter. Because Plasmodium parasites are purine auxotrophic, they must import purines from their host to fulfill metabolic requirements. They import purines via equilibrative nucleoside transporter 1 (ENT1) homologs. Recently, we used a yeast-based high-throughput screen to identify inhibitors of the P. falciparum ENT1 (PfENT1) that kill P. falciparum parasites in culture. P. berghei infection of mice is an animal model for human malaria. Because P. berghei ENT1 (PbENT1) shares only 60% amino acid sequence identity with PfENT1, we sought to characterize PbENT1 and its sensitivity to our PfENT1 inhibitors. We expressed PbENT1 in purine auxotrophic yeast and used radiolabeled substrate uptake to characterize its function. We showed that PbENT1 transports both purines and pyrimidines. It preferred nucleosides compared with nucleobases. Inosine (IC50 = 3.7 µM) and guanosine (IC50 = 21.3 µM) had the highest affinities. Our recently discovered PfENT1 inhibitors were equally effective against both PbENT1- and PfENT1-mediated purine uptake. The PfENT1 inhibitors are at least 10-fold more potent against PfENT1 than human hENT1. They kill P. berghei parasites in 24-hour ex vivo culture. Thus, the P. berghei murine malaria model may be useful to evaluate the efficacy of PfENT1 inhibitors in vivo and their therapeutic potential for treatment of malaria.


Assuntos
Antimaláricos/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Plasmodium berghei/metabolismo , Adenosina/metabolismo , Animais , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo , Trítio/metabolismo , Uridina/metabolismo
11.
Nat Commun ; 6: 6715, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25823686

RESUMO

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg(-1) and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4-5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pirimidinas/farmacologia , Aminas/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Resistência Microbiana a Medicamentos , Cobaias , Meia-Vida , Ratos
12.
Mol Microbiol ; 97(2): 381-95, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25898991

RESUMO

The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria.


Assuntos
Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Cloroquina , Resistência a Medicamentos , Eritrócitos/parasitologia , Frequência do Gene , Haplótipos , Humanos , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
13.
ACS Chem Biol ; 9(3): 722-30, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24369685

RESUMO

Chloroquine (CQ) resistance in the human malaria parasite Plasmodium falciparum is primarily conferred by mutations in the "chloroquine resistance transporter" (PfCRT). The resistance-conferring form of PfCRT (PfCRT(CQR)) mediates CQ resistance by effluxing the drug from the parasite's digestive vacuole, the acidic compartment in which CQ exerts its antiplasmodial effect. PfCRT(CQR) can also decrease the parasite's susceptibility to other quinoline drugs, including the current antimalarials quinine and amodiaquine. Here we describe interactions between PfCRT(CQR) and a series of dimeric quinine molecules using a Xenopus laevis oocyte system for the heterologous expression of PfCRT and using an assay that detects the drug-associated efflux of H(+) ions from the digestive vacuole in parasites that harbor different forms of PfCRT. The antiplasmodial activities of dimers 1 and 6 were also examined in vitro (against drug-sensitive and drug-resistant strains of P. falciparum) and in vivo (against drug-sensitive P. berghei). Our data reveal that the quinine dimers are the most potent inhibitors of PfCRT(CQR) reported to date. Furthermore, the lead compounds (1 and 6) were not effluxed by PfCRT(CQR) from the digestive vacuole but instead accumulated to very high levels within this organelle. Both 1 and 6 exhibited in vitro antiplasmodial activities that were inversely correlated with CQ. Moreover, the additional parasiticidal effect exerted by 1 and 6 in the drug-resistant parasites was attributable, at least in part, to their ability to inhibit PfCRT(CQR). This highlights the potential for devising new antimalarial therapies that exploit inherent weaknesses in a key resistance mechanism of P. falciparum.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Quinina/farmacologia , Quinolinas/farmacologia , Animais , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Dimerização , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Malária/tratamento farmacológico , Malária/parasitologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Estrutura Molecular , Oócitos/metabolismo , Plasmodium berghei/efeitos dos fármacos , Proteínas de Protozoários/genética , Quinina/química , Quinina/uso terapêutico , Transfecção , Xenopus laevis
14.
Antimicrob Agents Chemother ; 58(1): 183-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24145526

RESUMO

The increasing prevalence in Southeast Asia of Plasmodium falciparum infections with delayed parasite clearance rates, following treatment of malaria patients with the artemisinin derivative artesunate, highlights an urgent need to identify which of the currently available artemisinin-based combination therapies (ACTs) are most suitable to treat populations with emerging artemisinin resistance. Here, we demonstrate that the rodent Plasmodium berghei SANA strain has acquired artemisinin resistance following drug pressure, as defined by reduced parasite clearance and early recrudescence following daily exposure to high doses of artesunate or the active metabolite dihydroartemisinin. Using the SANA strain and the parental drug-sensitive N strain, we have interrogated the antimalarial activity of five ACTs, namely, artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, dihydroartemisinin-piperaquine, and the newest combination artesunate-pyronaridine. By monitoring parasitemia and outcome for 30 days following initiation of treatment, we found that infections with artemisinin-resistant P. berghei SANA parasites can be successfully treated with artesunate-pyronaridine used at doses that are curative for the parental drug-sensitive N strain. No other partner drug combination was as effective in resolving SANA infections. Of the five partner drugs tested, pyronaridine was also the most effective at suppressing the recrudescence of SANA parasites. These data support the potential benefit of implementing ACTs with pyronaridine in regions affected by artemisinin-resistant malaria.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Amodiaquina/uso terapêutico , Animais , Artesunato , Combinação de Medicamentos , Resistência a Medicamentos , Feminino , Citometria de Fluxo , Mefloquina/uso terapêutico , Camundongos , Naftiridinas/uso terapêutico
15.
Nature ; 504(7479): 248-253, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24284631

RESUMO

Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Malária/tratamento farmacológico , Malária/parasitologia , Plasmodium/efeitos dos fármacos , Plasmodium/enzimologia , 1-Fosfatidilinositol 4-Quinase/química , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Citocinese/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Ácidos Graxos/metabolismo , Feminino , Hepatócitos/parasitologia , Humanos , Imidazóis/metabolismo , Imidazóis/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Macaca mulatta , Masculino , Modelos Biológicos , Modelos Moleculares , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium/classificação , Plasmodium/crescimento & desenvolvimento , Pirazóis/metabolismo , Pirazóis/farmacologia , Quinoxalinas/metabolismo , Quinoxalinas/farmacologia , Reprodutibilidade dos Testes , Esquizontes/citologia , Esquizontes/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
16.
Cell Microbiol ; 15(9): 1585-604, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23490300

RESUMO

The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short-chain fatty acid derivative that regulates the activity of α-ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra-hepaticparasite maturation. LipB-deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid-restricted conditions induced by treatment with the lipoic acid analogue 8-bromo-octanoate or with the lipid-reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines.


Assuntos
Interações Hospedeiro-Parasita , Fígado/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Ácido Tióctico/metabolismo , Animais , Deleção de Genes , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
17.
Curr Opin Infect Dis ; 24(6): 570-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22001944

RESUMO

PURPOSE OF REVIEW: Artemisinin-based combination therapies (ACTs) have been deployed globally with remarkable success for more than 10 years without having lost their malaria treatment efficacy. However, recent reports from the Thai-Cambodian border reveal evidence of emerging resistance to artemisinins. The latest published clinical and molecular findings are summarized herein. RECENT FINDINGS: Clinical studies have identified delayed parasite clearance time as the most robust marker of artemisinin resistance. Resistance has only been documented from South-east Asia and has been observed in isolates that show no significant decrease in drug susceptibility in vitro. Genetic investigations have yet to uncover robust molecular markers. In-vitro studies have identified parasite quiescence or dormancy mechanisms that protect early 'ring-stage' intra-erythrocytic parasites against short-term artemisinin exposure. This might be achieved by reducing the rate of hemoglobin degradation, important for artemisinin bioactivation. SUMMARY: Should ACTs fail, no suitable alternatives exist as first-line treatments of P. falciparum malaria. Intensified efforts are essential to monitor the spread of resistance, define therapeutic and operational strategies to counter its impact, and understand its molecular basis. Success in these areas is critical to ensuring that recent gains in reducing the burden of malaria are not lost.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Sudeste Asiático , Resistência a Medicamentos/genética , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação
19.
Antimicrob Agents Chemother ; 55(7): 3115-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21464242

RESUMO

Evidence of emerging Plasmodium falciparum resistance to artemisinin-based combination therapies, documented in western Cambodia, underscores the continuing need to identify new antimalarial combinations. Given recent reports of the resurgence of chloroquine-sensitive P. falciparum parasites in Malawi, after the enforced and prolonged withdrawal of this drug, and indications of a possible synergistic interaction with the macrolide azithromycin, we sought to further characterize chloroquine-azithromycin combinations for their in vitro and in vivo antimalarial properties. In vitro 96-h susceptibility testing of chloroquine-azithromycin combinations showed mostly additive interactions against freshly cultured P. falciparum field isolates obtained from Mali. Some evidence of synergy, however, was apparent at the fractional 90% inhibitory concentration level. Additional in vitro testing highlighted the resistance reversal properties of amlodipine for both chloroquine and quinine. In vivo experiments, using the Peters 4-day suppressive test in a P. yoelii mouse model, revealed up to 99.9% suppression of parasitemia following treatment with chloroquine-azithromycin plus the R enantiomer of amlodipine. This enantiomer was chosen because it does not manifest the cardiac toxicities observed with the racemic mixture. Pharmacokinetic/pharmacodynamic analyses in this rodent model and subsequent extrapolation to a 65-kg adult led to the estimation that 1.8 g daily of R-amlodipine would be required to achieve similar efficacy in humans, for whom this is likely an unsafe dose. While these data discount amlodipine as an additional partner for chloroquine-based combination therapy, our studies continue to support azithromycin as a safe and effective addition to antimalarial combination therapies.


Assuntos
Anlodipino/farmacologia , Antimaláricos/farmacologia , Azitromicina/farmacologia , Cloroquina/farmacologia , Animais , Interações Medicamentosas , Feminino , Camundongos , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos
20.
Infect Immun ; 79(3): 1374-85, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21220485

RESUMO

The microsporidia are a diverse phylum of obligate intracellular parasites that infect all major animal groups and have been recognized as emerging human pathogens for which few chemotherapeutic options currently exist. These organisms infect every tissue and organ system, causing significant pathology, especially in immune-compromised populations. The microsporidian spore employs a unique infection strategy in which its contents are delivered into a host cell via the polar tube, an organelle that lies coiled within the resting spore but erupts with a force sufficient to pierce the plasma membrane of its host cell. Using biochemical and molecular approaches, we have previously identified components of the polar tube and spore wall of the Encephalitozoonidae. In this study, we employed a shotgun proteomic strategy to identify novel structural components of these organelles in Encephalitozoon cuniculi. As a result, a new component of the E. cuniculi developing spore wall was identified. Surprisingly, using the same approach, a heretofore undescribed filamentous network within the lumen of the parasitophorous vacuole was discovered. This network was also present in the parasitophorous vacuole of Encephalitozoon hellem. Thus, in addition to further elucidating the molecular composition of seminal organelles and revealing novel diagnostic and therapeutic targets, proteomic analysis-driven approaches exploring the spore may also uncover unknown facets of microsporidian biology.


Assuntos
Encephalitozoon cuniculi/ultraestrutura , Encephalitozoon/ultraestrutura , Esporos Fúngicos/ultraestrutura , Western Blotting , Encephalitozoon/química , Encephalitozoon/metabolismo , Encephalitozoon cuniculi/química , Encephalitozoon cuniculi/metabolismo , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Microscopia de Fluorescência , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esporos Fúngicos/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...