Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 164: 191-199, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37059043

RESUMO

Recycled PMMA was prepared by directly polymerizing crude pyrolysis oils from lab-scale pyrolysis of collected industrial waste PMMA. The pyrolysis oils consisted mainly of methyl methacrylate (MMA, >85%), while the type and number of by-products from the thermal process were assigned through GC-MS analysis showing a clear correlation to the pyrolysis temperature. By-products can be removed by distillation; however, directly employing the crude oils to prepare PMMA through solution, suspension, emulsion, or casting polymerization was investigated to assess the potential for omitting this costly step. It was found that the crude pyrolysis oils could be polymerized efficiently via solution, emulsion, and casting polymerization to produce a polymer similar to the PMMA prepared from a pristine monomer. The impurities in the PMMAs prepared from the crude mixtures were investigated by extraction analyses followed by screening by GC-MS. In the case of casting polymerization, the GC-MS analysis, as expected, revealed various residual by-products, while solution and emulsion polymerization showed only very few impurities, mainly originating from the polymerization and not the feed material. Additional purification of the crude pyrolysis oils would be required for applications in casting polymerization. In contrast, direct polymerization by emulsion or solution polymerization is considered applicable for producing pristine PMMA from crude waste PMMA pyrolysis oil.


Assuntos
Polímeros , Polimetil Metacrilato , Emulsões , Metilmetacrilato , Óleos
2.
J Environ Manage ; 198(Pt 1): 308-318, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28478348

RESUMO

Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant availability in a short-term soil incubation study. The compositional changes related mainly to differences in the proximate composition as well as to the release of especially nitrogen, sulfur, cadmium and to some extent, phosphorus (P). The cadmium load per unit of P was reduced with 75-85% in gasification processes and 10-15% in pyrolysis whereas no reduction was observed in incineration processes. The influence on other heavy metals was less pronounced. The plant availability of P in the substrates varied from almost zero to almost 100% of the plant availability of P in the untreated sludge. Post-oxidized slow pyrolysis char was found to be the substrate with the highest P fertilizer value while ash from commercial fluid bed sludge incineration had the lowest P fertilizer quality. The high P fertilizer value in the best substrate is suggested to be a function of several different mechanisms including structural surface changes and improvements in the association of P to especially magnesium, calcium and aluminum.


Assuntos
Fertilizantes , Metais Pesados , Esgotos , Incineração , Fósforo
3.
Waste Manag ; 66: 145-154, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28479087

RESUMO

The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems.


Assuntos
Fertilizantes , Fósforo , Esgotos , Cinza de Carvão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA