Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kidney Int ; 104(2): 378-387, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230223

RESUMO

Nephronophthisis (NPH) is an autosomal-recessive ciliopathy representing one of the most frequent causes of kidney failure in childhood characterized by a broad clinical and genetic heterogeneity. Applied to one of the worldwide largest cohorts of patients with NPH, genetic analysis encompassing targeted and whole exome sequencing identified disease-causing variants in 600 patients from 496 families with a detection rate of 71%. Of 788 pathogenic variants, 40 known ciliopathy genes were identified. However, the majority of patients (53%) bore biallelic pathogenic variants in NPHP1. NPH-causing gene alterations affected all ciliary modules defined by structural and/or functional subdomains. Seventy six percent of these patients had progressed to kidney failure, of which 18% had an infantile form (under five years) and harbored variants affecting the Inversin compartment or intraflagellar transport complex A. Forty eight percent of patients showed a juvenile (5-15 years) and 34% a late-onset disease (over 15 years), the latter mostly carrying variants belonging to the Transition Zone module. Furthermore, while more than 85% of patients with an infantile form presented with extra-kidney manifestations, it only concerned half of juvenile and late onset cases. Eye involvement represented a predominant feature, followed by cerebellar hypoplasia and other brain abnormalities, liver and skeletal defects. The phenotypic variability was in a large part associated with mutation types, genes and corresponding ciliary modules with hypomorphic variants in ciliary genes playing a role in early steps of ciliogenesis associated with juvenile-to-late onset NPH forms. Thus, our data confirm a considerable proportion of late-onset NPH suggesting an underdiagnosis in adult chronic kidney disease.


Assuntos
Ciliopatias , Doenças Renais Císticas , Falência Renal Crônica , Doenças Renais Policísticas , Adulto , Humanos , Falência Renal Crônica/diagnóstico , Doenças Renais Policísticas/complicações , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Mutação , Ciliopatias/genética
2.
Placenta ; 115: 20-26, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536809

RESUMO

Ultrasound is widely used as the initial diagnostic imaging modality during pregnancy with both high spatial and temporal resolution. Although MRI in pregnancy has long focused on the fetus, its use in placental imaging has greatly increased over recent years. In addition to the possibilities of evaluating function, MRI with a wide field of view and high contrast resolution allows characterization of placental anatomy, particularly in situations that are difficult to specify with ultrasound, especially for suspected placenta accreta. MRI also appears to be a particularly useful examination for the anatomical evaluation of the placenta independent of maternal body habitus or fetal position. Indeed, surprisingly little attention is paid to the placenta in MRI when the indication for the examination is fetal. Thus, some aspects of the placenta seem to us to be important to be recognized by the radiologist and to be described on the MRI report. In this review, we will describe MRI sequences used for, and common features seen in, imaging of i) the normal placenta, ii) abnormal aspects of the placenta that should be identified on MRI performed for fetal reason, and iii) placental anomalies for which placental MRI may be indicated.


Assuntos
Imageamento por Ressonância Magnética/métodos , Placenta/diagnóstico por imagem , Feminino , Humanos , Placenta/anormalidades , Placenta Acreta/diagnóstico por imagem , Doenças Placentárias/diagnóstico por imagem , Placenta Prévia/diagnóstico por imagem , Insuficiência Placentária/diagnóstico por imagem , Gravidez , Ultrassonografia Pré-Natal , Vasa Previa/diagnóstico por imagem
3.
Placenta ; 114: 90-99, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507031

RESUMO

It is important to develop a better understanding of placental insufficiency given its role in common maternofetal complications such as preeclampsia and fetal growth restriction. Functional magnetic resonance imaging offers unprecedented techniques for exploring the placenta under both normal and pathological physiological conditions. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) is an established and very robust method to investigate the microcirculatory parameters of an organ and more specifically its perfusion. It is currently a gold standard in the physiological and circulatory evaluation of an organ. Its application to the human placenta could enable to access many microcirculatory parameters relevant to the placental function such as organ blood flow, fractional blood volume, and permeability surface area, by the acquisition of serial images, before, during, and after administration of an intravenous contrast agent. Widely used in animal models with gadolinium-based contrast agents, its application to the human placenta could be possible if the safety of contrast agents in pregnancy is established or they are confirmed to not cross the placenta.


Assuntos
Retardo do Crescimento Fetal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Placenta/diagnóstico por imagem , Insuficiência Placentária/diagnóstico por imagem , Meios de Contraste , Feminino , Humanos , Microcirculação , Gravidez
4.
Proc Natl Acad Sci U S A ; 115(49): 12489-12494, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30446612

RESUMO

Genetic treatments of renal ciliopathies leading to cystic kidney disease would provide a real advance in current therapies. Mutations in CEP290 underlie a ciliopathy called Joubert syndrome (JBTS). Human disease phenotypes include cerebral, retinal, and renal disease, which typically progresses to end stage renal failure (ESRF) within the first two decades of life. While currently incurable, there is often a period of years between diagnosis and ESRF that provides a potential window for therapeutic intervention. By studying patient biopsies, patient-derived kidney cells, and a mouse model, we identify abnormal elongation of primary cilia as a key pathophysiological feature of CEP290-associated JBTS and show that antisense oligonucleotide (ASO)-induced splicing of the mutated exon (41, G1890*) restores protein expression in patient cells. We demonstrate that ASO-induced splicing leading to exon skipping is tolerated, resulting in correct localization of CEP290 protein to the ciliary transition zone, and restoration of normal cilia length in patient kidney cells. Using a gene trap Cep290 mouse model of JBTS, we show that systemic ASO treatment can reduce the cystic burden of diseased kidneys in vivo. These findings indicate that ASO treatment may represent a promising therapeutic approach for kidney disease in CEP290-associated ciliopathy syndromes.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cerebelo/anormalidades , Éxons/genética , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Proteínas Nucleares/genética , Retina/anormalidades , Adolescente , Animais , Antígenos de Neoplasias , Proteínas de Ciclo Celular , Células Cultivadas , Cerebelo/patologia , Proteínas do Citoesqueleto , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Rim/citologia , Masculino , Camundongos , Mutação , Retina/patologia
5.
Hum Mutat ; 39(7): 983-992, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29688594

RESUMO

Ciliopathies represent a wide spectrum of rare diseases with overlapping phenotypes and a high genetic heterogeneity. Among those, IFT140 is implicated in a variety of phenotypes ranging from isolated retinis pigmentosa to more syndromic cases. Using whole-genome sequencing in patients with uncharacterized ciliopathies, we identified a novel recurrent tandem duplication of exon 27-30 (6.7 kb) in IFT140, c.3454-488_4182+2588dup p.(Tyr1152_Thr1394dup), missed by whole-exome sequencing. Pathogenicity of the mutation was assessed on the patients' skin fibroblasts. Several hundreds of patients with a ciliopathy phenotype were screened and biallelic mutations were identified in 11 families representing 12 pathogenic variants of which seven are novel. Among those unrelated families especially with a Mainzer-Saldino syndrome, eight carried the same tandem duplication (two at the homozygous state and six at the heterozygous state). In conclusion, we demonstrated the implication of structural variations in IFT140-related diseases expanding its mutation spectrum. We also provide evidences for a unique genomic event mediated by an Alu-Alu recombination occurring on a shared haplotype. We confirm that whole-genome sequencing can be instrumental in the ability to detect structural variants for genomic disorders.


Assuntos
Proteínas de Transporte/genética , Ataxia Cerebelar/genética , Ciliopatias/genética , Retinose Pigmentar/genética , Sequenciamento Completo do Genoma , Elementos Alu/genética , Ataxia Cerebelar/patologia , Ciliopatias/patologia , Bases de Dados Genéticas , Éxons/genética , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação/genética , Linhagem , Fenótipo , Retinose Pigmentar/patologia
6.
Hum Mol Genet ; 26(23): 4657-4667, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973549

RESUMO

Joubert syndrome (JBTS) is the archetypal ciliopathy caused by mutation of genes encoding ciliary proteins leading to multi-system phenotypes, including a cerebello-retinal-renal syndrome. JBTS is genetically heterogeneous, however mutations in CEP290 are a common underlying cause. The renal manifestation of JBTS is a juvenile-onset cystic kidney disease, known as nephronophthisis, typically progressing to end-stage renal failure within the first two decades of life, thus providing a potential window for therapeutic intervention. In order to increase understanding of JBTS and its associated kidney disease and to explore potential treatments, we conducted a comprehensive analysis of primary renal epithelial cells directly isolated from patient urine (human urine-derived renal epithelial cells, hURECs). We demonstrate that hURECs from a JBTS patient with renal disease have elongated and disorganized primary cilia and that this ciliary phenotype is specifically associated with an absence of CEP290 protein. Treatment with the Sonic hedgehog (Shh) pathway agonist purmorphamine or cyclin-dependent kinase inhibition (using roscovitine and siRNA directed towards cyclin-dependent kinase 5) ameliorated the cilia phenotype. In addition, purmorphamine treatment was shown to reduce cyclin-dependent kinase 5 in patient cells, suggesting a convergence of these signalling pathways. To our knowledge, this is the most extensive analysis of primary renal epithelial cells from JBTS patients to date. It demonstrates the feasibility and power of this approach to directly assess the consequences of patient-specific mutations in a physiologically relevant context and a previously unrecognized convergence of Shh agonism and cyclin-dependent kinase inhibition as potential therapeutic targets.


Assuntos
Anormalidades Múltiplas/tratamento farmacológico , Anormalidades Múltiplas/patologia , Cerebelo/anormalidades , Cílios/patologia , Anormalidades do Olho/tratamento farmacológico , Anormalidades do Olho/patologia , Doenças Renais Císticas/tratamento farmacológico , Doenças Renais Císticas/patologia , Morfolinas/uso terapêutico , Purinas/uso terapêutico , Retina/anormalidades , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Cerebelo/metabolismo , Cerebelo/patologia , Criança , Pré-Escolar , Cílios/efeitos dos fármacos , Cílios/genética , Cílios/metabolismo , Ciliopatias/tratamento farmacológico , Ciliopatias/genética , Ciliopatias/metabolismo , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas do Citoesqueleto , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Falência Renal Crônica/genética , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Masculino , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Linhagem , Doenças Renais Policísticas/genética , Cultura Primária de Células , Retina/metabolismo , Retina/patologia , Roscovitina , Transdução de Sinais
7.
J Am Soc Nephrol ; 28(10): 2901-2914, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28566479

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) occur in three to six of 1000 live births, represent about 20% of the prenatally detected anomalies, and constitute the main cause of CKD in children. These disorders are phenotypically and genetically heterogeneous. Monogenic causes of CAKUT in humans and mice have been identified. However, despite high-throughput sequencing studies, the cause of the disease remains unknown in most patients, and several studies support more complex inheritance and the role of environmental factors and/or epigenetics in the pathophysiology of CAKUT. Here, we report the targeted exome sequencing of 330 genes, including genes known to be involved in CAKUT and candidate genes, in a cohort of 204 unrelated patients with CAKUT; 45% of the patients were severe fetal cases. We identified pathogenic mutations in 36 of 204 (17.6%) patients. These mutations included five de novo heterozygous loss of function mutations/deletions in the PBX homeobox 1 gene (PBX1), a gene known to have a crucial role in kidney development. In contrast, the frequency of SOX17 and DSTYK variants recently reported as pathogenic in CAKUT did not indicate causality. These findings suggest that PBX1 is involved in monogenic CAKUT in humans and call into question the role of some gene variants recently reported as pathogenic in CAKUT. Targeted exome sequencing also proved to be an efficient and cost-effective strategy to identify pathogenic mutations and deletions in known CAKUT genes.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Proto-Oncogênicas/genética , Anormalidades Urogenitais/genética , Estudos de Coortes , Análise Mutacional de DNA , Exoma , Feminino , Humanos , Masculino , Fator de Transcrição 1 de Leucemia de Células Pré-B
9.
Am J Hum Genet ; 100(2): 323-333, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28089251

RESUMO

Nephronophthisis (NPH), an autosomal-recessive tubulointerstitial nephritis, is the most common cause of hereditary end-stage renal disease in the first three decades of life. Since most NPH gene products (NPHP) function at the primary cilium, NPH is classified as a ciliopathy. We identified mutations in a candidate gene in eight individuals from five families presenting late-onset NPH with massive renal fibrosis. This gene encodes MAPKBP1, a poorly characterized scaffolding protein for JNK signaling. Immunofluorescence analyses showed that MAPKBP1 is not present at the primary cilium and that fibroblasts from affected individuals did not display ciliogenesis defects, indicating that MAPKBP1 may represent a new family of NPHP not involved in cilia-associated functions. Instead, MAPKBP1 is recruited to mitotic spindle poles (MSPs) during the early phases of mitosis where it colocalizes with its paralog WDR62, which plays a key role at MSP. Detected mutations compromise recruitment of MAPKBP1 to the MSP and/or its interaction with JNK2 or WDR62. Additionally, we show increased DNA damage response signaling in fibroblasts from affected individuals and upon knockdown of Mapkbp1 in murine cell lines, a phenotype previously associated with NPH. In conclusion, we identified mutations in MAPKBP1 as a genetic cause of juvenile or late-onset and cilia-independent NPH.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Doenças Renais Císticas/congênito , Adolescente , Alelos , Animais , Proteínas de Ciclo Celular , Criança , Cílios/genética , Dano ao DNA/genética , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose , Regulação da Expressão Gênica , Humanos , Rim/citologia , Rim/metabolismo , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/genética , Camundongos , Camundongos Knockout , Mitose , Mutação , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Linhagem , Fenótipo , Transdução de Sinais , Polos do Fuso/metabolismo , Adulto Jovem , Peixe-Zebra
10.
Mycorrhiza ; 27(4): 321-330, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27928691

RESUMO

Mycorrhizal symbiosis is extremely important for tree growth, survival and resistance after transplantation particularly in Madagascar where deforestation is a major concern. The importance of mycorrhizal symbiosis is further increased when soil conditions at the planting site are limiting. To identify technical itineraries capable of improving ecological restoration in Madagascar, we needed to obtain native ectomycorrhizal (ECM) saplings with a wide diversity of ECM fungi. To this end, we transplanted ECM seedlings from the wild (wildlings) to a nursery. Using molecular characterisation of internal transcribed spacer (ITS) rDNA, we tested the effect of transplanting Asteropeia mcphersonii wildlings on ECM communities after 8 months of growth in the nursery. With or without the addition of soil from the site where the seedlings were sampled to the nursery substrate, we observed a dramatic change in the composition of fungal communities with a decrease in the ECM infection rate, a tremendous increase in the abundance of an operational taxonomic unit (OTU) taxonomically close to the order Trechisporales and the disappearance of all OTUs of Boletales. Transplanting to the nursery and/or to nursery conditions was shown to be incompatible with the survival and even less with the development in the nursery of most ECM fungi naturally associated with A. mcphersonii wildings.


Assuntos
Caryophyllales/microbiologia , Florestas , Micorrizas/classificação , Microbiologia do Solo , Simbiose , Basidiomycota , Agricultura Florestal/métodos , Madagáscar
11.
Hum Mutat ; 37(10): 1025-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27319779

RESUMO

Neonatal sclerosing cholangitis (NSC) is a rare biliary disease leading to liver transplantation in childhood. Patients with NSC and ichtyosis have already been identified with a CLDN1 mutation, encoding a tight-junction protein. However, for the majority of patients, the molecular basis of NSC remains unknown. We identified biallelic missense mutations or in-frame deletion in DCDC2 in four affected children. Mutations involve highly conserved amino acids in the doublecortin domains of the protein. In cholangiocytes, DCDC2 protein is normally located in the cytoplasm and cilia, whereas in patients the mutated protein is accumulated in the cytoplasm, absent from cilia, and associated with ciliogenesis defect. This is the first report of DCDC2 mutations in NSC. This data expands the molecular spectrum of NSC, that can be considered as a ciliopathy and also expands the clinical spectrum of the DCDC2 mutations, previously reported in dyslexia, deafness, and nephronophtisis.


Assuntos
Colangite Esclerosante/genética , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Colangite Esclerosante/metabolismo , Citoplasma/metabolismo , Feminino , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/química , Mutação de Sentido Incorreto , Linhagem , Domínios Proteicos , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...