Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 11: 621, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21059242

RESUMO

BACKGROUND: The genus Aquilegia, consisting of approximately 70 taxa, is a member of the basal eudicot lineage, Ranuculales, which is evolutionarily intermediate between monocots and core eudicots, and represents a relatively unstudied clade in the angiosperm phylogenetic tree that bridges the gap between these two major plant groups. Aquilegia species are closely related and their distribution covers highly diverse habitats. These provide rich resources to better understand the genetic basis of adaptation to different pollinators and habitats that in turn leads to rapid speciation. To gain insights into the genome structure and facilitate gene identification, comparative genomics and whole-genome shotgun sequencing assembly, BAC-based genomics resources are of crucial importance. RESULTS: BAC-based genomic resources, including two BAC libraries, a physical map with anchored markers and BAC end sequences, were established from A. formosa. The physical map was composed of a total of 50,155 BAC clones in 832 contigs and 3939 singletons, covering 21X genome equivalents. These contigs spanned a physical length of 689.8 Mb (~2.3X of the genome) suggesting the complex heterozygosity of the genome. A set of 197 markers was developed from ESTs induced by drought-stress, or involved in anthocyanin biosynthesis or floral development, and was integrated into the physical map. Among these were 87 genetically mapped markers that anchored 54 contigs, spanning 76.4 Mb (25.5%) across the genome. Analysis of a selection of 12,086 BAC end sequences (BESs) from the minimal tiling path (MTP) allowed a preview of the Aquilegia genome organization, including identification of transposable elements, simple sequence repeats and gene content. Common repetitive elements previously reported in both monocots and core eudicots were identified in Aquilegia suggesting the value of this genome in connecting the two major plant clades. Comparison with sequenced plant genomes indicated a higher similarity to grapevine (Vitis vinifera) than to rice and Arabidopsis in the transcriptomes. CONCLUSIONS: The A. formosa BAC-based genomic resources provide valuable tools to study Aquilegia genome. Further integration of other existing genomics resources, such as ESTs, into the physical map should enable better understanding of the molecular mechanisms underlying adaptive radiation and elaboration of floral morphology.


Assuntos
Aquilegia/genética , Cromossomos Artificiais Bacterianos/genética , Genoma de Planta/genética , Genômica/métodos , Mapeamento Físico do Cromossomo/métodos , Mapeamento de Sequências Contíguas , Impressões Digitais de DNA , Biblioteca Gênica , Ligação Genética , Marcadores Genéticos , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Sintenia/genética , Vitis/genética
2.
BMC Plant Biol ; 8: 69, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18570660

RESUMO

BACKGROUND: The recent development of novel repeat-fruiting types of blackberry (Rubus L.) cultivars, combined with a long history of morphological marker-assisted selection for thornlessness by blackberry breeders, has given rise to increased interest in using molecular markers to facilitate blackberry breeding. Yet no genetic maps, molecular markers, or even sequences exist specifically for cultivated blackberry. The purpose of this study is to begin development of these tools by generating and annotating the first blackberry expressed sequence tag (EST) library, designing primers from the ESTs to amplify regions containing simple sequence repeats (SSR), and testing the usefulness of a subset of the EST-SSRs with two blackberry cultivars. RESULTS: A cDNA library of 18,432 clones was generated from expanding leaf tissue of the cultivar Merton Thornless, a progenitor of many thornless commercial cultivars. Among the most abundantly expressed of the 3,000 genes annotated were those involved with energy, cell structure, and defense. From individual sequences containing SSRs, 673 primer pairs were designed. Of a randomly chosen set of 33 primer pairs tested with two blackberry cultivars, 10 detected an average of 1.9 polymorphic PCR products. CONCLUSION: This rate predicts that this library may yield as many as 940 SSR primer pairs detecting 1,786 polymorphisms. This may be sufficient to generate a genetic map that can be used to associate molecular markers with phenotypic traits, making possible molecular marker-assisted breeding to compliment existing morphological marker-assisted breeding in blackberry.


Assuntos
Etiquetas de Sequências Expressas , Sequências Repetitivas de Ácido Nucleico/genética , Rosaceae/genética , Biblioteca Gênica , Genótipo , Modelos Genéticos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
3.
BMC Cell Biol ; 9: 26, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18492269

RESUMO

BACKGROUND: Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress in vitro. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis. RESULTS: There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC) is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6 approximately 1.1 (microm/hr) and 3.8 (microm(3)/hr), respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R2 = 0.7). CONCLUSION: Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK). Tubular transformation is a programmed cell survival process that diverges from apoptosis. SBCs may be an important indicator of intrinsic aging-related stress.


Assuntos
Apoptose , Células Sanguíneas/citologia , Células Sanguíneas/enzimologia , Estresse Fisiológico , Proteínas Quinases p38 Ativadas por Mitógeno/sangue , Envelhecimento , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Contagem de Células Sanguíneas , Células Sanguíneas/efeitos dos fármacos , Caspase 3 , Bovinos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/enzimologia , Citoesqueleto/patologia , Desidratação/sangue , Desidratação/etiologia , Desidratação/patologia , Cães , Feminino , Cavalos , Humanos , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos BALB C , Miofibrilas , Piridinas/farmacologia , Quinolinas/farmacologia , Coelhos , Ratos , Ovinos , Especificidade da Espécie , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
4.
BMC Cell Biol ; 8: 36, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17705822

RESUMO

BACKGROUND: Tubular shaped mammalian cells in response to dehydration have not been previously reported. This may be due to the invisibility of these cells in aqueous solution, and because sugars and salts added to the cell culture for manipulation of the osmotic conditions inhibit transformation of normal cells into tubular shaped structures. RESULTS: We report the transformation of normal spherical mammalian cells into tubular shaped structures in response to stress. We have termed these transformed structures 'straw cells' which we have associated with a variety of human tissue types, including fresh, post mortem and frozen lung, liver, skin, and heart. We have also documented the presence of straw cells in bovine brain and prostate tissues of mice. The number of straw cells in heart, lung tissues, and collapsed straw cells in urine increases with the age of the mammal. Straw cells were also reproduced in vitro from human cancer cells (THP1, CACO2, and MCF7) and mouse stem cells (D1 and adipose D1) by dehydrating cultured cells. The tubular center of the straw cells is much smaller than the original cell; houses condensed organelles and have filamentous extensions that are covered with microscopic hair-like structures and circular openings. When rehydrated, the filaments uptake water rapidly. The straw cell walls, have a range of 120 nm to 200 nm and are composed of sulfated-glucose polymers and glycosylated acidic proteins. The transformation from normal cell to straw cells takes 5 to 8 hr in open-air. This process is characterized by an increase in metabolic activity. When rehydrated, the straw cells regain their normal spherical shape and begin to divide in 10 to 15 days. Like various types of microbial spores, straw cells are resistant to harsh environmental conditions such as UV-C radiation. CONCLUSION: Straw cells are specialized cellular structures and not artifacts from spontaneous polymerization, which are generated in response to stress conditions, like dehydration. The disintegrative, mobile, disruptive and ubiquitous nature of straw cells makes this a possible physiological process that may be involved in human health, longevity, and various types of diseases such as cancer.


Assuntos
Forma Celular , Estresse Fisiológico/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carboidratos/análise , Bovinos , Sobrevivência Celular , Células Cultivadas , Criança , Pré-Escolar , Desidratação/patologia , Humanos , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem , Estresse Fisiológico/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...