Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 254(3): 121-135, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35904489

RESUMO

Girls with obesity are at increased risk of early puberty. Obesity is associated with insulin resistance and hyperinsulinemia. We hypothesized that insulin plays a physiological role in pubertal transition, and super-imposed hyperinsulinemia due to childhood obesity promotes early initiation of puberty in girls. To isolate the effect of hyperinsulinemia from adiposity, we compared pre-pubertal and pubertal states in hyperinsulinemic, lean muscle (M)-insulin-like growth factor 1 receptor (IGF-1R)-lysine (K)-arginine (R) (MKR) mice to normoinsulinemic WT, with puberty onset defined by vaginal opening (VO). Our results show MKR had greater insulin resistance and higher insulin levels (P < 0.05) than WT despite lower body weight (P < 0.0001) and similar IGF-1 levels (P = NS). Serum luteinizing hormone (LH) levels were higher in hyperinsulinemic MKR (P = 0.005), and insulin stimulation induced an increase in LH levels in WT. VO was earlier in hyperinsulinemic MKR vs WT (P < 0.0001). When compared on the day of VO, kisspeptin expression was higher in hyperinsulinemic MKR vs WT (P < 0.05), and gonadotropin-releasing hormone and insulin receptor isoform expression was similar (P = NS). Despite accelerated VO, MKR had delayed, disordered ovarian follicle and mammary gland development. In conclusion, we found that hyperinsulinemia alone without adiposity triggers earlier puberty. In our study, hyperinsulinemia also promoted dyssynchrony between pubertal initiation and progression, urging future studies in girls with obesity to assess alterations in transition to adulthood.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Obesidade Infantil , Animais , Feminino , Humanos , Hiperinsulinismo/metabolismo , Insulina , Camundongos , Puberdade/fisiologia
2.
Breast Cancer Res ; 24(1): 30, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440032

RESUMO

BACKGROUND: Parathyroid hormone-related protein (PTHrP) is required for embryonic breast development and has important functions during lactation, when it is produced by alveolar epithelial cells and secreted into the maternal circulation to mobilize skeletal calcium used for milk production. PTHrP is also produced by breast cancers, and GWAS studies suggest that it influences breast cancer risk. However, the exact functions of PTHrP in breast cancer biology remain unsettled. METHODS: We developed a tetracycline-regulated, MMTV (mouse mammary tumor virus)-driven model of PTHrP overexpression in mammary epithelial cells (Tet-PTHrP mice) and bred these mice with the MMTV-PyMT (polyoma middle tumor-antigen) breast cancer model to analyze the impact of PTHrP overexpression on normal mammary gland biology and in breast cancer progression. RESULTS: Overexpression of PTHrP in luminal epithelial cells caused alveolar hyperplasia and secretory differentiation of the mammary epithelium with milk production. This was accompanied by activation of Stat5 and increased expression of E74-like factor-5 (Elf5) as well as a delay in post-lactation involution. In MMTV-PyMT mice, overexpression of PTHrP (Tet-PTHrP;PyMT mice) shortened tumor latency and accelerated tumor growth, ultimately reducing overall survival. Tumors overproducing PTHrP also displayed increased expression of nuclear pSTAT5 and Elf5, increased expression of markers of secretory differentiation and milk constituents, and histologically resembled secretory carcinomas of the breast. Overexpression of PTHrP within cells isolated from tumors, but not PTHrP exogenously added to cell culture media, led to activation of STAT5 and milk protein gene expression. In addition, neither ablating the Type 1 PTH/PTHrP receptor (PTH1R) in epithelial cells nor treating Tet-PTHrP;PyMT mice with an anti-PTH1R antibody prevented secretory differentiation or altered tumor latency. These data suggest that PTHrP acts in a cell-autonomous, intracrine manner. Finally, expression of PTHrP in human breast cancers is associated with expression of genes involved in milk production and STAT5 signaling. CONCLUSIONS: Our study suggests that PTHrP promotes pathways leading to secretory differentiation and proliferation in both normal mammary epithelial cells and in breast tumor cells.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Proteína Relacionada ao Hormônio Paratireóideo , Fator de Transcrição STAT5 , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Lactação/genética , Glândulas Mamárias Animais , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
3.
Endocrinology ; 160(8): 1797-1810, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087002

RESUMO

Prior studies have demonstrated that the calcium pump, plasma membrane calcium ATPase 2 (PMCA2), mediates calcium transport into milk and prevents mammary epithelial cell death during lactation. PMCA2 also regulates cell proliferation and cell death in breast cancer cells, in part by maintaining the receptor tyrosine kinase ErbB2/HER2 within specialized plasma membrane domains. Furthermore, the regulation of PMCA2 membrane localization and activity in breast cancer cells requires its interaction with the PDZ domain-containing scaffolding molecule sodium-hydrogen exchanger regulatory factor (NHERF) 1. In this study, we asked whether NHERF1 also interacts with PMCA2 in normal mammary epithelial cells during lactation. Our results demonstrate that NHERF1 expression is upregulated during lactation and that it interacts with PMCA2 at the apical membrane of secretory luminal epithelial cells. Similar to PMCA2, NHERF1 expression is rapidly reduced by milk stasis after weaning. Examining lactating NHERF1 knockout (KO) mice showed that NHERF1 contributes to the proper apical location of PMCA2, for proper apical-basal polarity in luminal epithelial cells, and that it participates in the suppression of Stat3 activation and the prevention of premature mammary gland involution. Additionally, we found that PMCA2 also interacts with the closely related scaffolding molecule, NHERF2, at the apical membrane, which likely maintains PMCA2 at the plasma membrane of mammary epithelial cells in lactating NHERF1KO mice. Based on these data, we conclude that, during lactation, NHERF1 is required for the proper expression and apical localization of PMCA2, which, in turn, contributes to preventing the premature activation of Stat3 and the lysosome-mediated cell death pathway that usually occur only early in mammary involution.


Assuntos
Glândulas Mamárias Animais/fisiologia , Fosfoproteínas/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/análise , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Polaridade Celular , Feminino , Lactação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/análise , Trocadores de Sódio-Hidrogênio/análise
4.
J Cell Biochem ; 118(1): 31-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27191548

RESUMO

Dietary methionine restriction (MR) increases longevity and improves healthspan in rodent models. Young male C57BL/6J mice were placed on MR to assess effects on bone structure and formation. Mice were fed diets containing 0.86% or 0.12% methionine for 5 weeks. Fasting blood plasma was analyzed for metabolic and bone-related biomarkers. Tibiae were analyzed by histomorphometry, while femurs were analyzed by micro-CT and biomechanically using 4-point bending. MR mice had reduced plasma glucose and insulin, while FGF21 and FGF23 increased. Plasma levels of osteocalcin and osteoprotegrin were unaffected, but sclerostin and procollagen I decreased. MR induced bone marrow fat accretion, antithetical to the reduced fat depots seen throughout the body. Cortical bone showed significant decreases in Bone Tissue Density (BTD). In trabecular bone, mice had decreased BTD, bone surface, trabecula and bone volume, and trabecular thickness.. Biomechanical testing showed that on MR, bones were significantly less stiff and had reduced maximum load and total work, suggesting greater fragility. Reduced expression of RUNX2 occurred in bone marrow of MR mice. These results suggest that MR alters bone remodeling and apposition. In MR mice, miR-31 in plasma and liver, and miR-133a, miR-335-5p, and miR-204 in the bone marrow was elevated. These miRNAs were shown previously to target and regulate Osterix and RUNX2 in bone, which could inhibit osteoblast differentiation and function. Therefore, dietary MR in young animals alters bone structure by increasing miRNAs in bone and liver that can target RUNX2. J. Cell. Biochem. 118: 31-42, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Alimentos Formulados/efeitos adversos , Regulação da Expressão Gênica , Metionina/deficiência , MicroRNAs/metabolismo , Tíbia/metabolismo , Animais , Glicemia/metabolismo , Densidade Óssea , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Masculino , Camundongos , Tíbia/patologia
5.
Ann N Y Acad Sci ; 1363: 68-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26916321

RESUMO

Dietary methionine restriction (MR) extends life span across species via various intracellular regulatory mechanisms. In rodents, MR induces resistance against adiposity, improves hepatic glucose metabolism, preserves cardiac function, and reduces body size, all of which can affect the onset of age-related diseases. Recent studies have shown that MR-affected biomarkers, such as fibroblast growth factor 21, adiponectin, leptin, cystathionine ß synthase, and insulin-like growth factor 1, can potentially alter physiology. The beneficial effects of MR could be explained in part by its ability to reduce mitochondrial oxidative stress. Studies have revealed that MR can reduce reactive oxygen species that damage cells and promote cancer progression. It has been demonstrated that either MR or the targeting of specific genes in the methionine cycle could induce cell apoptosis while decreasing proliferation in several cancer models. The complete mechanism underlying the actions of MR on the cell cycle during cancer has not been fully elucidated. Epigenetic mechanisms, such as methylation and noncoding RNAs, are also possible downstream effectors of MR; future studies should help to elucidate some of these mechanisms. Despite evidence that changes in dietary methionine can affect epigenetics, it remains unknown whether epigenetics is a mechanism in MR. This review summarizes research on MR and its involvement in metabolism, cancer, and epigenetics.


Assuntos
Restrição Calórica , Dieta , Expectativa de Vida , Metionina/metabolismo , Adiposidade , Animais , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Progressão da Doença , Epigênese Genética , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Miocárdio/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
6.
Development ; 139(22): 4239-49, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23034629

RESUMO

Parathyroid hormone-related protein (PTHrP) regulates cell fate and specifies the mammary mesenchyme during embryonic development. Loss of PTHrP or its receptor (Pthr1) abolishes the expression of mammary mesenchyme markers and allows mammary bud cells to revert to an epidermal fate. By contrast, overexpression of PTHrP in basal keratinocytes induces inappropriate differentiation of the ventral epidermis into nipple-like skin and is accompanied by ectopic expression of Lef1, ß-catenin and other markers of the mammary mesenchyme. In this study, we document that PTHrP modulates Wnt/ß-catenin signaling in the mammary mesenchyme using a Wnt signaling reporter, TOPGAL-C. Reporter expression is completely abolished by loss of PTHrP signaling and ectopic reporter activity is induced by overexpression of PTHrP. We also demonstrate that loss of Lef1, a key component of the Wnt pathway, attenuates the PTHrP-induced abnormal differentiation of the ventral skin. To characterize further the contribution of canonical Wnt signaling to embryonic mammary development, we deleted ß-catenin specifically in the mammary mesenchyme. Loss of mesenchymal ß-catenin abolished expression of the TOPGAL-C reporter and resulted in mammary buds with reduced expression of mammary mesenchyme markers and impaired sexual dimorphism. It also prevented the ectopic, ventral expression of mammary mesenchyme markers caused by overexpression of PTHrP in basal keratinocytes. Therefore, we conclude that a mesenchymal, canonical Wnt pathway mediates the PTHrP-dependent specification of the mammary mesenchyme.


Assuntos
Glândulas Mamárias Animais/embriologia , Mesoderma/embriologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Via de Sinalização Wnt , Animais , Diferenciação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Queratinócitos/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/biossíntese , Glândulas Mamárias Animais/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Proteína Relacionada ao Hormônio Paratireóideo/deficiência , Proteína Relacionada ao Hormônio Paratireóideo/genética , Receptores de Hormônios Paratireóideos/biossíntese , Receptores de Hormônios Paratireóideos/deficiência , Receptores de Hormônios Paratireóideos/genética , Trombospondinas/metabolismo , Proteínas Wnt/biossíntese , Proteínas Wnt/metabolismo , beta Catenina/biossíntese , beta Catenina/metabolismo
7.
Breast Cancer Res ; 14(1): 203, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22315958

RESUMO

Cadherins are transmembrane receptors that function through calcium-dependent homophilic and heterophilic interactions that provide cell-cell contact and communication in many different organ systems. In the mammary gland only a few of the cadherins that make up this large superfamily of proteins have been characterized. Frequently in metastatic breast cancer, the genes for cadherins are epigenetically silenced, mutated, or regulated differently. During epithelial-mesenchymal transition, cadherins that are expressed normally in the epithelial cells are down-regulated, while cadherins expressed in the mesenchyme are up-regulated. This process is known as cadherin switching, and its regulation can sometimes facilitate the increased motility, invasiveness and proliferation that occurs in metastatic cancer cells. Depending on the context, however, cell motility, invasiveness, proliferation and expression of mesenchymal markers can be independently modulated from cadherin expression, leading to partial epithelial-mesenchymal transitions and even mesenchymal-epithelial transitions (METs). This review will summarize the current understanding of cadherins found in the mammary gland and what is known about their mechanism of regulation in the mammary gland during normal physiological conditions and in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Glândulas Mamárias Humanas/metabolismo , Animais , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/fisiologia , Desmossomos/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/patologia , Transdução de Sinais
8.
Dev Dyn ; 238(11): 2713-24, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19795511

RESUMO

Parathyroid hormone-related protein (PTHrP) acts on the mammary mesenchyme and is required for proper embryonic mammary development. In order to understand PTHrP's effects on mesenchymal cells, we profiled gene expression in WT and PTHrP(-/-) mammary buds, and in WT and K14-PTHrP ventral skin at E15.5. By cross-referencing the differences in gene expression between these groups, we identified 35 genes potentially regulated by PTHrP in the mammary mesenchyme, including 6 genes known to be involved in BMP signaling. One of these genes was MMP2. We demonstrated that PTHrP and BMP4 regulate MMP2 gene expression and MMP2 activity in mesenchymal cells. Using mammary bud cultures, we demonstrated that MMP2 acts downstream of PTHrP to stimulate ductal outgrowth. Future studies on the functional role of other genes on this list should expand our knowledge of how PTHrP signaling triggers the onset of ductal outgrowth from the embryonic mammary buds.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/embriologia , Metaloproteinase 2 da Matriz/metabolismo , Morfogênese/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Animais , Células Cultivadas , Dipeptídeos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Ácidos Hidroxâmicos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Queratinas/metabolismo , Glândulas Mamárias Animais/metabolismo , Inibidores de Metaloproteinases de Matriz , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Relacionada ao Hormônio Paratireóideo/genética , Inibidores de Proteases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/fisiologia
9.
Development ; 134(6): 1221-30, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17301089

RESUMO

The mammary glands develop initially as buds arising from the ventral embryonic epidermis. Recent work has shed light on signaling pathways leading to the patterning and formation of the mammary placodes and buds in mouse embryos. Relatively little is known of the signaling pathways that initiate branching morphogenesis and the formation of the ducts from the embryonic buds. Previous studies have shown that parathyroid hormone-related protein (PTHrP; also known as parathyroid hormone-like peptide, Pthlh) is produced by mammary epithelial cells and acts on surrounding mesenchymal cells to promote their differentiation into a mammary-specific dense mesenchyme. As a result of PTHrP signaling, the mammary mesenchyme supports mammary epithelial cell fate, initiates ductal development and patterns the overlying nipple sheath. In this report, we demonstrate that PTHrP acts, in part, by sensitizing mesenchymal cells to BMP signaling. PTHrP upregulates BMP receptor 1A expression in the mammary mesenchyme, enabling it to respond to BMP4, which is expressed within mesenchymal cells underlying the ventral epidermis during mammary bud formation. We demonstrate that BMP signaling is important for outgrowth of normal mammary buds and that BMP4 can rescue outgrowth of PTHrP(-/-) mammary buds. In addition, the combination of PTHrP and BMP signaling is responsible for upregulating Msx2 gene expression within the mammary mesenchyme, and disruption of the Msx2 gene rescues the induction of hair follicles on the ventral surface of mice overexpressing PTHrP in keratinocytes (K14-PTHrP). Our data suggest that PTHrP signaling sensitizes the mammary mesenchyme to the actions of BMP4, triggering outgrowth of the mammary buds and inducing MSX2 expression, which, in turn, leads to lateral inhibition of hair follicle formation within the developing nipple sheath.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/embriologia , Proteínas de Homeodomínio/genética , Glândulas Mamárias Animais/embriologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Animais , Proteína Morfogenética Óssea 4 , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Proteínas Morfogenéticas Ósseas/genética , Embrião de Mamíferos/metabolismo , Folículo Piloso/metabolismo , Glândulas Mamárias Animais/metabolismo , Mesoderma/química , Mesoderma/metabolismo , Camundongos , Camundongos Mutantes , Proteína Relacionada ao Hormônio Paratireóideo/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Transdução de Sinais , Regulação para Cima
10.
J Bone Miner Res ; 21(1): 113-23, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16355280

RESUMO

UNLABELLED: The PTHrP gene generates low-abundance mRNA and protein products that are not easily localized by in situ hybridization histochemistry or immunohistochemistry. We report here a PTHrP-lacZ knockin mouse in which beta-gal activity seems to provide a simple and sensitive read-out of PTHrP gene expression. INTRODUCTION: PTH-related protein (PTHrP) is widely expressed in fetal and adult tissues, typically as low-abundance mRNA and protein products that maybe difficult to localize by conventional methods. We created a PTHrP-lacZ knockin mouse as a means of surveying PTHrP gene expression in general and of identifying previously unrecognized sites of PTHrP expression. MATERIALS AND METHODS: We created a lacZ reporter construct under the control of endogenous PTHrP gene regulatory sequences. The AU-rich instability sequences in the PTHrP 3' untranslated region (UTR) were replaced with SV40 sequences, generating products with lacZ/beta gal kinetics rather than those of PTHrP. A nuclear localization sequence was not present in the construct. RESULTS: We characterized beta-galactosidase (beta-gal) activity in embryonic whole mounts and in the skeleton in young and adult animals. In embryos, we confirmed widespread PTHrP expression in many known sites and in several novel epidermal appendages (nail beds and footpads). In costal cartilage, beta-gal activity localized to the perichondrium but not the underlying chondrocytes. In the cartilaginous molds of forming long bones, beta-gal activity was first evident at the proximal and distal ends. Shortly after birth, the developing secondary ossification center formed in the center of this PTHrP-rich chondrocyte population. As the secondary ossification center developed, it segregated this population into two distinct PTHrP beta-gal+ subpopulations: a subarticular subpopulation immediately subjacent to articular chondrocytes and a proliferative chondrocyte subpopulation proximal to the chondrocyte columns in the growth plate. These discrete populations remained into adulthood. beta-gal activity was not identified in osteoblasts but was present in many periosteal sites. These included simple periosteum as well as fibrous tendon insertion sites of the so-called bony and periosteal types; the beta-gal-expressing cells in these sites were in the outer fibrous layer of the periosteum or its apparent equivalents at tendon insertion sites. Homozygous PTHrP-lacZ knockin mice had the expected chondrodysplastic phenotype and a much expanded region of proximal beta-gal activity in long bones, which appeared to reflect in large part the effects of feedback signaling by Indian hedgehog on proximal cell proliferation and PTHrP gene expression. CONCLUSIONS: The PTHrP-lacZ mouse seems to provide a sensitive reporter system that may prove useful as a means of studying PTHrP gene expression.


Assuntos
Desenvolvimento Ósseo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Óperon Lac , Proteína Relacionada ao Hormônio Paratireóideo/biossíntese , Animais , Osso e Ossos/citologia , Osso e Ossos/embriologia , Proliferação de Células , Condrócitos/citologia , Condrócitos/metabolismo , Marcadores Genéticos/genética , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Transgenes/genética
11.
Breast Cancer Res ; 7(5): 220-4, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16168142

RESUMO

The development of the embryonic mammary gland involves communication between the epidermis and mesenchyme and is coordinated temporally and spatially by various signaling pathways. Although many more genes are likely to control mammary gland development, functional roles have been identified for Wnt, fibroblast growth factor, and parathyroid hormone-related protein signaling. This review describes what is known about the molecular mechanisms that regulate embryonic mammary gland development.


Assuntos
Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Animais , Mama/embriologia , Mama/crescimento & desenvolvimento , Desenvolvimento Embrionário , Células Epidérmicas , Epiderme/fisiologia , Feminino , Humanos , Lactação , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Leite/metabolismo , Morfogênese , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia
12.
J Bone Miner Res ; 20(7): 1103-13, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15940363

RESUMO

UNLABELLED: We identified cellular targets of canonical Wnt signaling within the skeleton, which included chondrocytes, osteoblasts, and osteocytes in growing bone, but only osteocytes and chondrocytes in the mature skeleton. Mechanical deformation induced Wnt signaling in osteoblasts in vitro. INTRODUCTION: Genetic evidence in mice and humans has implicated the canonical Wnt signaling pathway in the control of skeletal development and bone mass. However, little is known of the details of Wnt signaling in the skeleton in vivo. We used Wnt indicator TOPGAL mice to identify which cells activated this pathway during bone development and in the mature skeleton. MATERIALS AND METHODS: We examined canonical Wnt signaling during embryonic and neonatal bone development in TOPGAL mice. The TOPGAL transgene consists of a beta-galactosidase gene driven by a T cell factor (TCF)beta-catenin responsive promoter so that canonical Wnt activity can be detected by X-gal staining. Expression of Wnt signaling components was examined in primary calvarial cell cultures by RT-PCR. The effect of mechanical deformation on Wnt signaling was examined in primary calvarial cells grown on collagen I and stretched using Flexercell Tension Plus System FX-4000T. Immunohistochemistry was used to examine the localization of beta-catenin in cartilage, bone, and cultured calvarial cells exposed to physical deformation. RESULTS AND CONCLUSIONS: Canonical Wnt signaling was active in several cell types in the fetal and neonatal skeleton, including chondrocytes, osteoblasts, and osteocytes. With age, activation of Wnt signaling became less prominent but persisted in chondrocytes and osteocytes. Although osteoblasts in culture expressed many different individual Wnt's and Wnt receptors, the TOPGAL transgene was not active in these cells at baseline. However, Wnt signaling was activated in these cells by physical deformation. Together with the activation of canonical Wnt signaling in osteocytes seen in vivo, these data suggest that Wnt signaling may be involved in the coupling of mechanical force to anabolic activity in the skeleton.


Assuntos
Desenvolvimento Ósseo , Osso e Ossos/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Animais , Osso e Ossos/citologia , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Crânio/química , Crânio/citologia , Estresse Mecânico , Linfócitos T/metabolismo , Transativadores/genética , Proteínas Wnt , beta Catenina , beta-Galactosidase/análise , beta-Galactosidase/genética
13.
Development ; 131(19): 4819-29, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15342465

RESUMO

Mammary glands, like other skin appendages such as hair follicles and teeth, develop from the surface epithelium and underlying mesenchyme; however, the molecular controls of embryonic mammary development are largely unknown. We find that activation of the canonical WNT/beta-catenin signaling pathway in the embryonic mouse mammary region coincides with initiation of mammary morphogenesis, and that WNT pathway activity subsequently localizes to mammary placodes and buds. Several Wnt genes are broadly expressed in the surface epithelium at the time of mammary initiation, and expression of additional Wnt and WNT pathway genes localizes to the mammary lines and placodes as they develop. Embryos cultured in medium containing WNT3A or the WNT pathway activator lithium chloride (LiCl) display accelerated formation of expanded placodes, and LiCl induces the formation of ectopic placode-like structures that show elevated expression of the placode marker Wnt10b. Conversely, expression of the secreted WNT inhibitor Dickkopf 1 in transgenic embryo surface epithelium in vivo completely blocks mammary placode formation and prevents localized expression of all mammary placode markers tested. These data indicate that WNT signaling promotes placode development and is required for initiation of mammary gland morphogenesis. WNT signals play similar roles in hair follicle formation and thus may be broadly required for induction of skin appendage morphogenesis.


Assuntos
Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfogênese , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Proteínas Wnt , Proteína Wnt-5a
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...