Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(4): 576-589, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591870

RESUMO

In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Mitocondrial , Mitocôndrias , Estresse Salino , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estresse Salino/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Regulação da Expressão Gênica de Plantas , Sistemas CRISPR-Cas
2.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38407464

RESUMO

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Assuntos
Hordeum , Feixe Vascular de Plantas , Hordeum/anatomia & histologia , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/fisiologia , Feixe Vascular de Plantas/crescimento & desenvolvimento , Transporte Biológico , Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/fisiologia
3.
J Exp Bot ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366171

RESUMO

The HD-ZIP class I transcription factor, HvHOX1 (Homeobox 1) or VRS1 (Vulgare Row-type Spike 1 or Six-rowed Spike 1), regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic function of HvHOX1 and HvHOX2 during spikelet development is still fragmentary. Here, we show that compared to HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of these genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.

4.
Plant Physiol ; 194(2): 849-866, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37951242

RESUMO

Breeding for variation in photoperiod response is crucial to adapt crop plants to various environments. Plants measure changes in day length by the circadian clock, an endogenous timekeeper that allows plants to anticipate changes in diurnal and seasonal light-dark cycles. Here, we describe the early maturity 7 (eam7) locus in barley (Hordeum vulgare), which interacts with PHOTOPERIOD 1 (Ppd-H1) to cause early flowering under non-inductive short days. We identify LIGHT-REGULATED WD 1 (LWD1) as a putative candidate to underlie the eam7 locus in barley as supported by genetic mapping and CRISPR-Cas9-generated lwd1 mutants. Mutations in eam7 cause a significant phase advance and a misregulation of core clock and clock output genes under diurnal conditions. Early flowering was linked to an upregulation of Ppd-H1 during the night and consequent induction of the florigen FLOWERING LOCUS T1 under short days. We propose that EAM7 controls photoperiodic flowering in barley by controlling the light input into the clock and diurnal expression patterns of the major photoperiod response gene Ppd-H1.


Assuntos
Relógios Circadianos , Hordeum , Relógios Circadianos/genética , Hordeum/genética , Melhoramento Vegetal , Ritmo Circadiano/genética , Fotoperíodo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas
5.
Plant Cell ; 35(11): 3973-4001, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37282730

RESUMO

Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.


Assuntos
Hordeum , Inflorescência , Hordeum/genética , Hordeum/metabolismo , Folhas de Planta/metabolismo , Meristema/genética , Perfilação da Expressão Gênica , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Reprod ; 36(1): 1-15, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35767067

RESUMO

KEY MESSAGE: In barley (Hordeum vulgare), MTOPVIB is critical for meiotic DSB and accompanied SC and CO formation while dispensable for meiotic bipolar spindle formation. Homologous recombination during meiosis assures genetic variation in offspring. Programmed meiotic DNA double-strand breaks (DSBs) are repaired as crossover (CO) or non-crossover (NCO) during meiotic recombination. The meiotic topoisomerase VI (TopoVI) B subunit (MTOPVIB) plays an essential role in meiotic DSB formation critical for CO-recombination. More recently MTOPVIB has been also shown to play a role in meiotic bipolar spindle formation in rice and maize. Here, we describe a meiotic DSB-defective mutant in barley (Hordeum vulgare L.). CRISPR-associated 9 (Cas9) endonuclease-generated mtopVIB plants show complete sterility due to the absence of meiotic DSB, synaptonemal complex (SC), and CO formation leading to the occurrence of univalents and their unbalanced segregation into aneuploid gametes. In HvmtopVIB plants, we also frequently found the bi-orientation of sister kinetochores in univalents during metaphase I and the precocious separation of sister chromatids during anaphase I. Moreover, the near absence of polyads after meiosis II, suggests that despite being critical for meiotic DSB formation in barley, MTOPVIB seems not to be strictly required for meiotic bipolar spindle formation.


Assuntos
Proteínas Arqueais , Hordeum , Hordeum/genética , Hordeum/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas Arqueais/genética , Meiose , DNA , Reparo do DNA
7.
Front Plant Sci ; 13: 880423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528945

RESUMO

WHIRLIES are plant-specific proteins binding to DNA in plastids, mitochondria, and nucleus. They have been identified as significant components of nucleoids in the organelles where they regulate the structure of the nucleoids and diverse DNA-associated processes. WHIRLIES also fulfil roles in the nucleus by interacting with telomers and various transcription factors, among them members of the WRKY family. While most plants have two WHIRLY proteins, additional WHIRLY proteins evolved by gene duplication in some dicot families. All WHIRLY proteins share a conserved WHIRLY domain responsible for ssDNA binding. Structural analyses revealed that WHIRLY proteins form tetramers and higher-order complexes upon binding to DNA. An outstanding feature is the parallel localization of WHIRLY proteins in two or three cell compartments. Because they translocate from organelles to the nucleus, WHIRLY proteins are excellent candidates for transducing signals between organelles and nucleus to allow for coordinated activities of the different genomes. Developmental cues and environmental factors control the expression of WHIRLY genes. Mutants and plants with a reduced abundance of WHIRLY proteins gave insight into their multiple functionalities. In chloroplasts, a reduction of the WHIRLY level leads to changes in replication, transcription, RNA processing, and DNA repair. Furthermore, chloroplast development, ribosome formation, and photosynthesis are impaired in monocots. In mitochondria, a low level of WHIRLIES coincides with a reduced number of cristae and a low rate of respiration. The WHIRLY proteins are involved in the plants' resistance toward abiotic and biotic stress. Plants with low levels of WHIRLIES show reduced responsiveness toward diverse environmental factors, such as light and drought. Consequently, because such plants are impaired in acclimation, they accumulate reactive oxygen species under stress conditions. In contrast, several plant species overexpressing WHIRLIES were shown to have a higher resistance toward stress and pathogen attacks. By their multiple interactions with organelle proteins and nuclear transcription factors maybe a comma can be inserted here? and their participation in organelle-nucleus communication, WHIRLY proteins are proposed to serve plant development and stress resistance by coordinating processes at different levels. It is proposed that the multifunctionality of WHIRLY proteins is linked to the plasticity of land plants that develop and function in a continuously changing environment.

8.
PLoS One ; 17(3): e0258924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35333858

RESUMO

Small RHO-type G-proteins act as signaling hubs and master regulators of polarity in eukaryotic cells. Their activity is tightly controlled, as defective RHO signaling leads to aberrant growth and developmental defects. Two major processes regulate G-protein activity: canonical shuttling between different nucleotide bound states and posttranslational modification (PTM), of which the latter can support or suppress RHO signaling, depending on the individual PTM. In plants, regulation of Rho of plants (ROPs) signaling activity has been shown to act through nucleotide exchange and GTP hydrolysis, as well as through lipid modification, but there is little data available on phosphorylation or ubiquitination of ROPs. Hence, we applied proteomic analyses to identify PTMs of the barley ROP RACB. We observed in vitro phosphorylation by barley ROP binding kinase 1 and in vivo ubiquitination of RACB. Comparative analyses of the newly identified RACB phosphosites and human RHO protein phosphosites revealed conservation of modified amino acid residues, but no overlap of actual phosphorylation patterns. However, the identified RACB ubiquitination site is conserved in all ROPs from Hordeum vulgare, Arabidopsis thaliana and Oryza sativa and in mammalian Rac1 and Rac3. Point mutation of this ubiquitination site leads to stabilization of RACB. Hence, this highly conserved lysine residue may regulate protein stability across different kingdoms.


Assuntos
Arabidopsis , Hordeum , Oryza , Proteínas de Plantas , Proteínas rho de Ligação ao GTP , Arabidopsis/genética , Arabidopsis/metabolismo , Hordeum/genética , Hordeum/metabolismo , Humanos , Nucleotídeos/metabolismo , Oryza/genética , Oryza/metabolismo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Ubiquitinação , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
9.
Plant J ; 103(5): 1869-1884, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530511

RESUMO

Cereal endosperm represents the most important source of the world's food; nevertheless, the molecular mechanisms underlying cell and tissue differentiation in cereal grains remain poorly understood. Endosperm cellularization commences at the maternal-filial intersection of grains and generates endosperm transfer cells (ETCs), a cell type with a prominent anatomy optimized for efficient nutrient transport. Barley HISTIDINE KINASE1 (HvHK1) was identified as a receptor component with spatially restricted expression in the syncytial endosperm where ETCs emerge. Here, we demonstrate its function in ETC fate acquisition using RNA interference-mediated downregulation of HvHK1. Repression of HvHK1 impairs cell specification in the central ETC region and the development of transfer cell morphology, and consecutively defects differentiation of adjacent endosperm tissues. Coinciding with reduced expression of HvHK1, disturbed cell plate formation and fusion were observed at the initiation of endosperm cellularization, revealing that HvHK1 triggers initial cytokinesis of ETCs. Cell-type-specific RNA sequencing confirmed loss of transfer cell identity, compromised cell wall biogenesis and reduced transport capacities in aberrant cells and elucidated two-component signaling and hormone pathways that are mediated by HvHK1. Gene regulatory network modeling was used to specify the direct targets of HvHK1; this predicted non-canonical auxin signaling elements as the main regulatory links governing cellularization of ETCs, potentially through interaction with type-B response regulators. This work provides clues to previously unknown molecular mechanisms directing ETC specification, a process with fundamental impact on grain yield in cereals.


Assuntos
Diferenciação Celular , Endosperma/crescimento & desenvolvimento , Histidina Quinase/metabolismo , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Divisão Celular , Polaridade Celular , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Histidina Quinase/fisiologia , Hordeum/enzimologia , Hordeum/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia
10.
J Exp Bot ; 70(21): 6057-6069, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31403664

RESUMO

Chloroplast protein degradation is known to occur both inside chloroplasts and in the vacuole. Genes encoding cysteine proteases have been found to be highly expressed during leaf senescence. However, it remains unclear where they participate in chloroplast protein degradation. In this study HvPAP14, which belongs to the C1A family of cysteine proteases, was identified in senescing barley (Hordeum vulgare L.) leaves by affinity enrichment using the mechanism-based probe DCG-04 targeting cysteine proteases and subsequent mass spectrometry. Biochemical analyses and expression of a HvPAP14:RFP fusion construct in barley protoplasts was used to identify the subcellular localization and putative substrates of HvPAP14. The HvPAP14:RFP fusion protein was detected in the endoplasmic reticulum and in vesicular bodies. Immunological studies showed that HvPAP14 was mainly located in chloroplasts, where it was found in tight association with thylakoid membranes. The recombinant enzyme was activated by low pH, in accordance with the detection of HvPAP14 in the thylakoid lumen. Overexpression of HvPAP14 in barley revealed that the protease can cleave LHCB proteins and PSBO as well as the large subunit of Rubisco. HvPAP14 is involved in the normal turnover of chloroplast proteins and may have a function in bulk protein degradation during leaf senescence.


Assuntos
Proteínas de Cloroplastos/metabolismo , Cisteína Proteases/metabolismo , Hordeum/enzimologia , Proteólise , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Hordeum/ultraestrutura , Concentração de Íons de Hidrogênio , Modelos Biológicos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
11.
Planta ; 249(5): 1337-1347, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30631956

RESUMO

MAIN CONCLUSION: Chloroplasts deficient in the major chloroplast nucleoid-associated protein WHIRLY1 have an enhanced ratio of LHCs to reaction centers, indicating that WHIRLY1 is required for a coordinate assembly of the photosynthetic apparatus during chloroplast development. Chloroplast development was found to be delayed in barley plants with an RNAi-mediated knockdown of WHIRLY1 encoding a major nucleoid-associated protein of chloroplasts. The plastids of WHIRLY1 deficient plants had a reduced ribosome content. Accordingly, plastid-encoded proteins of the photosynthetic apparatus showed delayed accumulation during chloroplast development coinciding with a delayed increase in photosystem II efficiency measured by chlorophyll fluorescence. In contrast, light harvesting complex proteins being encoded in the nucleus had a high abundance as in the wild type. The unbalanced assembly of the proteins of the photosynthetic apparatus in WHIRLY1-deficient plants coincided with the enhanced contents of chlorophyll b and xanthophylls. The lack of coordination was most obvious at the early stages of development. Overaccumulation of LHC proteins in comparison to reaction center proteins at the early stages of chloroplast development did not correlate with enhanced expression levels of the corresponding genes in the nucleus. This work revealed that WHIRLY1 does not influence LHC abundance at the transcriptional level. Rather, WHIRLY1 in association with nucleoids might play a structural role for both the assembly of ribosomes and the complexes of the photosynthetic apparatus.


Assuntos
Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Proteínas de Plantas/genética
12.
Genome Biol ; 19(1): 116, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111359

RESUMO

BACKGROUND: The large and highly repetitive genomes of the cultivated species Hordeum vulgare (barley), Triticum aestivum (wheat), and Secale cereale (rye) belonging to the Triticeae tribe of grasses appear to be particularly rich in gene-like sequences including partial duplicates. Most of them have been classified as putative pseudogenes. In this study we employ transient and stable gene silencing- and over-expression systems in barley to study the function of HvARM1 (for H. vulgare Armadillo 1), a partial gene duplicate of the U-box/armadillo-repeat E3 ligase HvPUB15 (for H. vulgare Plant U-Box 15). RESULTS: The partial ARM1 gene is derived from a gene-duplication event in a common ancestor of the Triticeae and contributes to quantitative host as well as nonhost resistance to the biotrophic powdery mildew fungus Blumeria graminis. In barley, allelic variants of HvARM1 but not of HvPUB15 are significantly associated with levels of powdery mildew infection. Both HvPUB15 and HvARM1 proteins interact in yeast and plant cells with the susceptibility-related, plastid-localized barley homologs of THF1 (for Thylakoid formation 1) and of ClpS1 (for Clp-protease adaptor S1) of Arabidopsis thaliana. A genome-wide scan for partial gene duplicates reveals further events in barley resulting in stress-regulated, potentially neo-functionalized, genes. CONCLUSION: The results suggest neo-functionalization of the partial gene copy HvARM1 increases resistance against powdery mildew infection. It further links plastid function with susceptibility to biotrophic pathogen attack. These findings shed new light on a novel mechanism to employ partial duplication of protein-protein interaction domains to facilitate the expansion of immune signaling networks.


Assuntos
Sequência Conservada/genética , Resistência à Doença/genética , Evolução Molecular , Duplicação Gênica , Interações Hospedeiro-Patógeno/genética , Poaceae/genética , Alelos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Marcadores Genéticos , Hordeum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Característica Quantitativa Herdável
13.
RNA Biol ; 15(7): 886-891, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29947287

RESUMO

In this article a novel mechanism of retrograde signaling by chloroplasts during stress is described. This mechanism involves the DNA/RNA binding protein WHIRLY1 as a regulator of microRNA levels. By virtue of its dual localization in chloroplasts and the nucleus of the same cell, WHIRLY1 was proposed as an excellent candidate coordinator of chloroplast function and nuclear gene expression. Comparison of wild-type and transgenic plants with an RNAi-mediated knockdown of WHIRLY1 showed, that the transgenic plants were unable to cope with continuous high light conditions. They were impaired in production of several microRNAs mediating post-transcriptional responses during stress. The results support a central role of WHIRLY1 in retrograde signaling and also underpin a so far underestimated role of microRNAs in this process.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hordeum/fisiologia , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico/fisiologia , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Hordeum/genética , MicroRNAs/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Proteínas de Ligação a RNA/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
14.
Plant Physiol Biochem ; 123: 281-287, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29275209

RESUMO

The plant primary energy metabolism is profoundly reorganized under biotic stress conditions and there is increasing evidence for a role of the fermentative pathway in biotic interactions. Previously we showed via transient gene silencing or overexpression a function of barley alcohol dehydrogenase 1 (HvADH-1) in the interaction of barley with the parasitic fungus Blumeria graminis f.sp. hordei (Bgh). Here we extend our studies on stable transgenic barley events over- or under-expressing HvADH-1 to analyse ADH-1 functions at the level of whole plants. Knock-down (KD) of HvADH-1 by dsRNA interference resulted in reduced and overexpression of HvADH-1 in strongly increased HvADH-1 enzyme activity in leaves of stable transgenic barley plants. The KD of HvADH-1 coincided with a reduced susceptibility to Bgh of both excised leaves and leaves of intact plants. Overexpression (OE) of HvADH-1 results in increased susceptibility to Bgh when excised leaves but not when whole seedlings were inoculated. When first leaves of 10-day-old barley plants were treated with a chitin elicitor, we observed a reduced enzyme activity of ADH-1/-1 homodimers at 48 h after treatment in the second, systemic leaf for empty vector controls and HvADH-1 KD events, but not for the HvADH-1 OE events. Reduced ADH-1 activity in the systemic leaf of empty vector controls and HvADH-1 KD events coincided with chitin-induced resistance to Bgh. Taken together, stable HvADH-1 (KD) or systemic down-regulation of ADH-1/-1 activity by chitin treatment modulated the pathogen response of barley to the biotrophic fungal parasite Bgh and resulted in less successful infections by Bgh.


Assuntos
Álcool Desidrogenase/metabolismo , Ascomicetos/crescimento & desenvolvimento , Quitina/metabolismo , Resistência à Doença , Hordeum , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Hordeum/enzimologia , Hordeum/microbiologia
15.
J Exp Bot ; 68(5): 983-996, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338757

RESUMO

WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid-nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Hordeum/fisiologia , Proteínas de Plantas/genética , Proteínas de Ligação a DNA/metabolismo , Hordeum/genética , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Análise de Sequência de DNA
16.
Front Plant Sci ; 7: 1836, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018377

RESUMO

Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

17.
PLoS One ; 11(3): e0150485, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26937960

RESUMO

A family of putative PECTIN ESTERASE INHIBITOR (PEI) genes, which were detected in the genomic region co-segregating with the resistance gene Rrs2 against scald caused by Rhynchosporium commune in barley, were characterized and tested for their possible involvement in mediating resistance to the pathogen by complementation and overexpression analysis. The sequences of the respective genes were derived from two BAC contigs originating from the susceptible cultivar 'Morex'. For the genes HvPEI2, HvPEI3, HvPEI4 and HvPEI6, specific haplotypes for 18 resistant and 23 susceptible cultivars were detected after PCR-amplification and haplotype-specific CAPS-markers were developed. None of the tested candidate genes HvPEI2, HvPEI3 and HvPEI4 alone conferred a high resistance level in transgenic over-expression plants, though an improvement of the resistance level was observed especially with OE-lines for gene HvPEI4. These results do not confirm but also do not exclude an involvement of the PEI gene family in the response to the pathogen. A candidate for the resistance gene Rrs2 could not be identified yet. It is possible that Rrs2 is a PEI gene or another type of gene which has not been detected in the susceptible cultivar 'Morex' or the full resistance reaction requires the presence of several PEI genes.


Assuntos
Hidrolases de Éster Carboxílico/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Doenças das Plantas/imunologia , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/metabolismo , Mapeamento Cromossômico , Haplótipos , Hordeum/classificação , Hordeum/imunologia , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Família Multigênica , Filogenia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas
18.
Curr Biol ; 26(7): 903-9, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26996502

RESUMO

Variation in the size, shape, and positioning of leaves as the major photosynthetic organs strongly impacts crop yield, and optimizing these aspects is a central aim of cereal breeding [1, 2]. Leaf growth in grasses is driven by cell proliferation and cell expansion in a basal growth zone [3]. Although several factors influencing final leaf size and shape have been identified from rice and maize [4-14], what limits grass leaf growth in the longitudinal or transverse directions during leaf development remains poorly understood. To identify factors involved in this process, we characterized the barley mutant broad leaf1 (blf1). Mutants form wider but slightly shorter leaves due to changes in the numbers of longitudinal cell files and of cells along the leaf length. These differences arise during primordia outgrowth because of more cell divisions in the width direction increasing the number of cell files. Positional cloning, analysis of independent alleles, and transgenic complementation confirm that BLF1 encodes a presumed transcriptional regulator of the INDETERMINATE DOMAIN family. In contrast to loss-of-function mutants, moderate overexpression of BLF1 decreases leaf width below wild-type levels. A functional BLF1-vYFP fusion protein expressed from the endogenous promoter shows a dynamic expression pattern in the shoot apical meristem and young leaf primordia. Thus, we propose that the BLF1 gene regulates barley leaf size by restricting cell proliferation in the leaf-width direction. Given the agronomic importance of canopy traits in cereals, identifying functionally different BLF1 alleles promises to allow for the generation of optimized cereal ideotypes.


Assuntos
Hordeum/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Divisão Celular , Proliferação de Células , Expressão Gênica , Mutação , Brotos de Planta/metabolismo
19.
J Exp Bot ; 67(9): 2675-87, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26951372

RESUMO

Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.


Assuntos
Ácido Abscísico/metabolismo , Hordeum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Ácido Abscísico/fisiologia , Hordeum/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas de Armazenamento de Sementes/análise , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/química , Sementes/metabolismo , Amido/análise , Sacarose/análise
20.
Front Plant Sci ; 7: 1995, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28101094

RESUMO

Customizable endonucleases are providing an effective tool for genome engineering. The resulting primary transgenic individuals (T0) are typically heterozygous and/or chimeric with respect to any mutations induced. To generate genetically fixed mutants, they are conventionally allowed to self-pollinate, a procedure which segregates individuals into mutant heterozygotes/homozygotes and wild types. The chances of recovering homozygous mutants among the progeny depend not only on meiotic segregation but also on the frequency of mutated germline cells in the chimeric mother plant. In Nicotiana species, the heritability of Cas9-induced mutations has not been demonstrated yet. RNA-guided Cas9 endonuclease-mediated mutagenesis was targeted to the green fluorescent protein (GFP) gene harbored by a transgenic tobacco line. Upon retransformation using a GFP-specific guide RNA/Cas9 construct, the T0 plants were allowed to either self-pollinate, or were propagated via regeneration from in vitro cultured embryogenic pollen which give rise to haploid/doubled haploid plants or from leaf explants that form plants vegetatively. Single or multiple mutations were detected in 80% of the T0 plants. About half of these mutations proved heritable via selfing. Regeneration from in vitro cultured embryogenic pollen allowed for homozygous mutants to be produced more efficiently than via sexual reproduction. Consequently, embryogenic pollen culture provides a convenient method to rapidly generate a variety of genetically fixed mutants following site-directed mutagenesis. The recovery of a mutation not found among sexually produced and analyzed progeny was shown to be achievable through vegetative plant propagation in vitro, which eventually resulted in heritability when the somatic clones were selfed. In addition, some in-frame mutations were associated with functional attenuation of the target gene rather than its full knock-out. The generation of mutants with compromised rather than abolished gene functionality holds promise for future approaches to the conclusive functional validation of genes which are indispensible for the plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...