Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 77(4): 740-8, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18065446

RESUMO

AIMS: The aim of the present study was to elucidate the molecular mechanism underlying the concomitant occurrence of cardiac conduction disease and long QT syndrome (LQT3), two SCN5A channelopathies that are explained by loss-of-function and gain-of-function, respectively, in the cardiac Na+ channel. METHODS AND RESULTS: A Caucasian family with prolonged QT interval, intermittent bundle-branch block, sudden cardiac death, and syncope was investigated. Lidocaine (1 mg/kg i.v.) normalized the prolonged QT interval and rescued bundle-branch block. An SCN5A mutation analysis was performed that revealed a C-to-A mutation at position 4859 (exon 28), predicted to change a highly conserved threonine for a lysine at position 1620. Mutant channels were characterized both in Xenopus oocytes and HEK293 cells. The T1620K mutation remarkably altered the properties of Nav1.5 channels. In particular, the voltage-dependence of the current decay time constants was largely lost. As a consequence, mutant channels inactivated faster than wild-type channels at potentials negative to -30 mV, resulting in less Na+ inward current (loss-of-function), but significantly slower at potentials positive to -30 mV, resulting in an increased Na+ inward current (gain-of-function). Moreover, we found a hyperpolarized shift of steady-state activation and an accelerated recovery from inactivation (gain-of-function). At the same time, channel availability was significantly reduced at the resting membrane potential (loss-of-function). CONCLUSION: We conclude that lysine at position 1620 leads to both loss-of-function and gain-of-function properties in hNav1.5 channels, which may consequently cause in the same individuals impaired impulse propagation in the conduction system and prolonged QTc intervals, respectively.


Assuntos
Bloqueio de Ramo/genética , Síndrome do QT Longo/genética , Proteínas Musculares/genética , Mutação , Miocárdio/metabolismo , Canais de Sódio/genética , Sódio/metabolismo , Potenciais de Ação , Adolescente , Adulto , Ajmalina/uso terapêutico , Animais , Antiarrítmicos/uso terapêutico , Bloqueio de Ramo/tratamento farmacológico , Bloqueio de Ramo/metabolismo , Bloqueio de Ramo/fisiopatologia , Linhagem Celular , Criança , Análise Mutacional de DNA , Morte Súbita Cardíaca/etiologia , Eletrocardiografia , Feminino , Técnicas de Transferência de Genes , Predisposição Genética para Doença , Humanos , Cinética , Lidocaína/uso terapêutico , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Lisina , Masculino , Proteínas Musculares/efeitos dos fármacos , Proteínas Musculares/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Linhagem , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo , Síncope/genética , Síncope/metabolismo , Treonina , Xenopus laevis
2.
J Biol Chem ; 281(14): 9498-506, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16469732

RESUMO

In the present study, we identified a novel splice variant of the human cardiac Na(+) channel Na(v)1.5 (Na(v)1.5d), in which a 40-amino acid sequence of the DII/DIII intracellular linker is missing due to a partial deletion of exon 17. Expression of Na(v)1.5d occurred in embryonic and adult hearts of either sex, indicating that the respective alternative splicing is neither age-dependent nor gender-specific. In contrast, Na(v)1.5d was not detected in the mouse heart, indicating that alternative splicing of Na(v)1.5 is species-dependent. In HEK293 cells, splice variant Na(v)1.5d generated voltage-dependent Na(+) currents that were markedly reduced compared with wild-type Na(v)1.5. Experiments with mexiletine and 8-bromo-cyclic AMP suggested that the trafficking of Na(v)1.5d channels was not impaired. However, single-channel recordings showed that the whole-cell current reduction was largely due to a significantly reduced open probability. Additionally, steady-state activation and inactivation were shifted to depolarized potentials by 15.9 and 5.1 mV, respectively. Systematic mutagenesis analysis of the spliced region provided evidence that a short amphiphilic region in the DII/DIII linker resembling an S4 voltage sensor of voltage-gated ion channels is an important determinant of Na(v)1.5 channel gating. Moreover, the present study identified novel short sequence motifs within this amphiphilic region that specifically affect the voltage dependence of steady-state activation and inactivation and current amplitude of human Na(v)1.5.


Assuntos
Processamento Alternativo , Coração/fisiologia , Ativação do Canal Iônico , Proteínas Musculares/fisiologia , Canais de Sódio/fisiologia , Adulto , Fatores Etários , Idoso , Sequência de Aminoácidos , Eletrofisiologia , Embrião de Mamíferos , Éxons , Feminino , Mutação da Fase de Leitura , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Canal de Sódio Disparado por Voltagem NAV1.5 , RNA , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA