Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 21560, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876925

RESUMO

Over decades it has been unclear how individual migratory songbirds cross large ecological barriers such as seas or deserts. By deploying light-level geolocators on four songbird species weighing only about 12 g, we found that these otherwise mainly nocturnal migrants seem to regularly extend their nocturnal flights into the day when crossing the Sahara Desert and the Mediterranean Sea. The proportion of the proposed diurnally flying birds gradually declined over the day with similar landing patterns in autumn and spring. The prolonged flights were slightly more frequent in spring than in autumn, suggesting tighter migratory schedules when returning to breeding sites. Often we found several patterns for barrier crossing for the same individual in autumn compared to the spring journey. As only a small proportion of the birds flew strictly during the night and even some individuals might have flown non-stop, we suggest that prolonged endurance flights are not an exception even in small migratory species. We emphasise an individual's ability to perform both diurnal and nocturnal migration when facing the challenge of crossing a large ecological barrier to successfully complete a migratory journey.


Assuntos
Migração Animal/fisiologia , Voo Animal/fisiologia , Aves Canoras/fisiologia , África do Norte , Animais , Cruzamento , Sistemas de Informação Geográfica , Mar Mediterrâneo
2.
PeerJ ; 2: e319, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24711970

RESUMO

Garden Warblers Sylvia borin were studied during autumn stopover in Crete before crossing the barrier of the Mediterranean Sea and the Sahara Desert. Birds followed with transmitters show extensive stopover periods, which were longer in first-year birds, 16 days, compared with adult birds, 14 days. The distribution of body masses from birds trapped in fig trees were used to estimate the departure body mass and the results found indicate that both age categories on average depart with a fuel load close to 100% of lean body mass. The movement of transmitter birds shows differences between first-year and adult birds. Adult birds move further away from the release site and many also left the study area. Several were found settled outside the study area, up to 17 km away, indicating that they regularly make longer stopover movements. It is suggested that this might be a result of that they return to a place where they stayed during an earlier migration. It was shown that stopover site fidelity exists and nine garden warblers were recaptured in the area during a following autumn. The results found highlights the importance of stopover areas close to the Sahara Desert.

3.
J Exp Biol ; 212(18): 2902-7, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19717671

RESUMO

Long-distance migrants regularly pass ecological barriers, like the Sahara desert, where extensive fuel loads are necessary for a successful crossing. A central question is how inexperienced migrants know when to put on extensive fuel loads. Beside the endogenous rhythm, external cues have been suggested to be important. Geomagnetic information has been shown to trigger changes in foraging behaviour and fuel deposition rate in migratory birds. The underlying mechanism for these adjustments, however, is not well understood. As the glucocorticoid hormone corticosterone is known to correlate with behaviour and physiology related to energy regulation in birds, we here investigated the effect of geomagnetic cues on circulating corticosterone levels in a long-distance migrant. Just as in earlier studies, juvenile thrush nightingales (Luscinia luscinia) caught during autumn migration and exposed to the simulated geomagnetic field of northern Egypt increased food intake and attained higher fuel loads than control birds experiencing the ambient magnetic field of southeast Sweden. Our results further show that experimental birds faced a reduced adrenocortical response compared with control birds, thus for the first time implying that geomagnetic cues trigger changes in hormonal secretion enabling appropriate behaviour along the migratory route.


Assuntos
Córtex Suprarrenal/metabolismo , Migração Animal/fisiologia , Corticosterona/metabolismo , Sinais (Psicologia) , Comportamento Alimentar/fisiologia , Magnetismo , Aves Canoras/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Voo Animal/fisiologia
4.
J Exp Biol ; 211(Pt 5): 649-53, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18281326

RESUMO

Recent studies have shown that migratory thrush nightingales (Luscinia luscinia) experimentally treated with multiple changes of the magnetic field simulating a journey to their target stopover area in northern Egypt, increased fuel deposition as expected in preparation to cross the Sahara desert. To investigate the significance of food intake on the body mass changes observed, in the work described here we analysed food intake of the nightingales under study in those earlier experiments. Furthermore, to study whether a single change in the magnetic field directly to northern Egypt is sufficient to provide information for fuelling decisions, we performed a new experiment, exposing thrush nightingales trapped in Sweden, directly to a magnetic field of northern Egypt. Our results show that an experimentally induced magnetic field of northern Egypt, close to the barrier crossing, triggers the same response in fuel deposition as experiments with multiple changes of the magnetic field simulating a migratory journey from Sweden to Egypt, suggesting that migratory birds do not require successive changes in field parameters to incorporate magnetic information into their migratory program. Furthermore, irrespective of experimental set up (single or multiple changes of the magnetic field parameters) increase in food intake seems to be the major reason for the observed increase in fuelling rate compared with control birds, suggesting that geomagnetic information might trigger hormonal changes in migratory birds enabling appropriate fuelling behaviour during migration.


Assuntos
Migração Animal/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Magnetismo , Passeriformes/fisiologia , Animais , Egito
5.
Proc Biol Sci ; 274(1622): 2145-51, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17609189

RESUMO

Recent evaluations of both temporal and spatial precision in bird migration have called for external cues in addition to the inherited programme defining the migratory journey in terms of direction, distance and fuelling behaviour along the route. We used juvenile European robins (Erithacus rubecula) to study whether geomagnetic cues affect fuel deposition in a medium-distance migrant by simulating a migratory journey from southeast Sweden to the wintering area in southern Spain. In the late phase of the onset of autumn migration, robins exposed to the magnetic treatment attained a lower fuel load than control birds exposed to the ambient magnetic field of southeast Sweden. In contrast, robins captured in the early phase of the onset of autumn migration all showed low fuel deposition irrespective of experimental treatment. These results are, as expected, the inverse of what we have found in similar studies in a long-distance migrant, the thrush nightingale (Luscinia luscinia), indicating that the reaction in terms of fuelling behaviour to a simulated southward migration varies depending on the relevance for the species. Furthermore, we suggest that information from the geomagnetic field act as an important external cue overriding the seasonal effect on fuelling behaviour in migratory birds.


Assuntos
Migração Animal/fisiologia , Estações do Ano , Aves Canoras/fisiologia , Animais , Planeta Terra , Europa (Continente) , Voo Animal , Magnetismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...