Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Pathol ; 52(1): 26-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24990481

RESUMO

Machupo virus, the causative agent of Bolivian hemorrhagic fever (BHF), is a highly lethal viral hemorrhagic fever of which little is known and for which no Food and Drug Administration-approved vaccines or therapeutics are available. This study evaluated the cynomolgus macaque as an animal model using the Machupo virus, Chicava strain, via intramuscular and aerosol challenge. The incubation period was 6 to 10 days with initial signs of depression, anorexia, diarrhea, mild fever, and a petechial skin rash. These were often followed by neurologic signs and death within an average of 18 days. Complete blood counts revealed leukopenia as well as marked thrombocytopenia. Serum chemistry values identified a decrease in total protein, marked increases in alanine aminotransferase and aspartate aminotransferase, and moderate increases in alkaline phosphatase. Gross pathology findings included a macular rash extending across the axillary and inguinal regions beginning at approximately 10 days postexposure as well as enlarged lymph nodes and spleen, enlarged and friable liver, and sporadic hemorrhages along the gastrointestinal mucosa and serosa. Histologic lesions consisted of foci of degeneration and necrosis/apoptosis in the haired skin, liver, pancreas, adrenal glands, lymph nodes, tongue, esophagus, salivary glands, stomach, small intestine, and large intestine. Lymphohistiocytic interstitial pneumonia was also present. Inflammation within the central nervous system (nonsuppurative encephalitis) was histologically apparent approximately 16 days postexposure and was generally progressive. This study provides insight into the course of Machupo virus infection in cynomolgus macaques and supports the usefulness of cynomolgus macaques as a viable model of human Machupo virus infection.


Assuntos
Arenavirus do Novo Mundo/fisiologia , Febre Hemorrágica Americana/patologia , Glândulas Suprarrenais/patologia , Aerossóis/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Febre Hemorrágica Americana/virologia , Humanos , Injeções Intramusculares , Fígado/patologia , Pulmão/patologia , Linfonodos/patologia , Macaca fascicularis , Masculino , Baço/patologia
2.
J Comp Pathol ; 148(1): 6-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22884034

RESUMO

In the three decades since the eradication of smallpox and cessation of routine vaccination, the collective memory of the devastating epidemics caused by this orthopoxvirus has waned, and the human population has become increasingly susceptible to a disease that remains high on the list of possible bioterrorism agents. Research using surrogate orthopoxviruses in their natural hosts, as well as limited variola virus research in animal models, continues worldwide; however, interpretation of findings is often limited by our relative lack of knowledge about the naturally occurring disease. For modern comparative pathologists, many of whom have no first-hand knowledge of naturally occurring smallpox, this work provides a contemporary review of this historical disease, as well as discussion of how it compares with human monkeypox and the corresponding diseases in macaques.


Assuntos
Macaca mulatta , Mpox/patologia , Varíola/patologia , Animais , Regulação Viral da Expressão Gênica , Humanos , Mpox/genética , Poxviridae/patogenicidade , Poxviridae/fisiologia , Varíola/genética , Especificidade da Espécie
3.
Vet Pathol ; 50(3): 514-29, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23262834

RESUMO

There is limited knowledge of the pathogenesis of human ebolavirus infections and no reported human cases acquired by the aerosol route. There is a threat of ebolavirus as an aerosolized biological weapon, and this study evaluated the pathogenesis of aerosol infection in 18 rhesus macaques. Important and unique findings include early infection of the respiratory lymphoid tissues, early fibrin deposition in the splenic white pulp, and perivasculitis and vasculitis in superficial dermal blood vessels of haired skin with rash. Initial infection occurred in the respiratory lymphoid tissues, fibroblastic reticular cells, dendritic cells, alveolar macrophages, and blood monocytes. Virus spread to regional lymph nodes, where significant viral replication occurred. Virus secondarily infected many additional blood monocytes and spread from the respiratory tissues to multiple organs, including the liver and spleen. Viremia, increased temperature, lymphocytopenia, neutrophilia, thrombocytopenia, and increased alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, total bilirubin, serum urea nitrogen, creatinine, and hypoalbuminemia were measurable mid to late infection. Infection progressed rapidly with whole-body destruction of lymphoid tissues, hepatic necrosis, vasculitis, hemorrhage, and extravascular fibrin accumulation. Hypothermia and thrombocytopenia were noted in late stages with the development of disseminated intravascular coagulation and shock. This study provides unprecedented insight into pathogenesis of human aerosol Zaire ebolavirus infection and suggests development of a medical countermeasure to aerosol infection will be a great challenge due to massive early infection of respiratory lymphoid tissues. Rhesus macaques may be used as a model of aerosol infection that will allow the development of lifesaving medical countermeasures under the Food and Drug Administration's animal rule.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/patologia , Macaca mulatta , Aerossóis , Animais , Armas Biológicas , Temperatura Corporal , Feminino , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/virologia , Humanos , Fígado/patologia , Fígado/virologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/patologia , Linfonodos/virologia , Tecido Linfoide/patologia , Tecido Linfoide/virologia , Masculino , Modelos Animais , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Baço/patologia , Baço/virologia , Viremia , Replicação Viral
4.
J Virol ; 85(4): 1581-93, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21147913

RESUMO

Vaccinia virus (VV) mutants lacking the double-stranded RNA (dsRNA)-binding E3L protein (ΔE3L mutant VV) show restricted replication in most cell types, as dsRNA produced by VV activates protein kinase R (PKR), leading to eIF2α phosphorylation and impaired translation initiation. Here we show that cells infected with ΔE3L mutant VV assemble cytoplasmic granular structures which surround the VV replication factories at an early stage of the nonproductive infection. These structures contain the stress granule-associated proteins G3BP, TIA-1, and USP10, as well as poly(A)-containing RNA. These structures lack large ribosomal subunit proteins, suggesting that they are translationally inactive. Formation of these punctate structures correlates with restricted replication, as they occur in >80% of cells infected with ΔE3L mutant VV but in only 10% of cells infected with wild-type VV. We therefore refer to these structures as antiviral granules (AVGs). Formation of AVGs requires PKR and phosphorylated eIF2α, as mouse embryonic fibroblasts (MEFs) lacking PKR displayed reduced granule formation and MEFs lacking phosphorylatable eIF2α showed no granule formation. In both cases, these decreased levels of AVG formation correlated with increased ΔE3L mutant VV replication. Surprisingly, MEFs lacking the AVG component protein TIA-1 supported increased replication of ΔE3L mutant VV, despite increased eIF2α phosphorylation and the assembly of AVGs that lacked TIA-1. These data indicate that the effective PKR-mediated restriction of ΔE3L mutant VV replication requires AVG formation subsequent to eIF2α phosphorylation. This is a novel finding that supports the hypothesis that the formation of subcellular protein aggregates is an important component of the successful cellular antiviral response.


Assuntos
Antivirais/metabolismo , Grânulos Citoplasmáticos/metabolismo , Vaccinia virus/patogenicidade , Animais , Antivirais/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Chlorocebus aethiops , Cricetinae , DNA Helicases , Células HeLa , Humanos , Camundongos , Mutação , Orthopoxvirus/genética , Orthopoxvirus/patogenicidade , Fosforilação , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Antígeno-1 Intracelular de Células T , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Vaccinia virus/genética , Células Vero , Proteínas Virais/genética , Replicação Viral , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
5.
Lab Invest ; 80(2): 171-86, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10701687

RESUMO

Induction of apoptosis has been documented during infection with a number of different viruses. In this study, we used transmission electron microscopy (TEM) and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling to investigate the effects of Ebola and Marburg viruses on apoptosis of different cell populations during in vitro and in vivo infections. Tissues from 18 filovirus-infected nonhuman primates killed in extremis were evaluated. Apoptotic lymphocytes were seen in all tissues examined. Filoviral replication occurred in cells of the mononuclear phagocyte system and other well-documented cellular targets by TEM and immunohistochemistry, but there was no evidence of replication in lymphocytes. With the exception of intracytoplasmic viral inclusions, filovirus-infected cells were morphologically normal or necrotic, but did not exhibit ultrastructural changes characteristic of apoptosis. In lymph nodes, filoviral antigen was co-localized with apoptotic lymphocytes. Examination of cell populations in lymph nodes showed increased numbers of macrophages and concomitant depletion of CD8+ T cells and plasma cells in filovirus-infected animals. This depletion was particularly striking in animals infected with the Zaire subtype of Ebola virus. In addition, apoptosis was demonstrated in vitro in lymphocytes of filovirus-infected human peripheral blood mononuclear cells by TEM. These findings suggest that lymphopenia and lymphoid depletion associated with filoviral infections result from lymphocyte apoptosis induced by a number of factors that may include release of various chemical mediators from filovirus-infected or activated cells, damage to the fibroblastic reticular cell conduit system, and possibly stimulation by a viral protein.


Assuntos
Apoptose , Ebolavirus/patogenicidade , Marburgvirus/patogenicidade , Animais , Ebolavirus/ultraestrutura , Endotélio Vascular/ultraestrutura , Endotélio Vascular/virologia , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Linfonodos/ultraestrutura , Linfonodos/virologia , Marburgvirus/ultraestrutura , Microscopia Eletrônica , Monócitos/ultraestrutura , Monócitos/virologia , Primatas
6.
Adv Exp Med Biol ; 440: 33-41, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9782262

RESUMO

Molecular mechanisms regulating virus xenotropism and cross-species transmission are poorly understood. Host range mutants (MHV-H2) of mouse hepatitis virus (MHV) strains were isolated from mixed cultures containing progressively increasing concentrations of nonpermissive Syrian baby hamster kidney (BHK) cells and decreasing concentrations of permissive murine astrocytoma (DBT) cells. MHV-H2 was polytrophic, replicating efficiently in normally nonpermissive BHK cells, Syrian and Chinese hamster (DDT-1 and CHO) cells, human adenocarcinoma (HRT), primate kidney (VERO) and in murine 17Cl-1 cell lines. Little if any virus replication was detected in feline kidney (CRFK), and porcine testicular (ST) cell lines. To study the effects of xenotrophic spread on virus receptor-interactions in the original host, murine DBT cells were pretreated with a monoclonal antibody (MAb) CC1, directed against the MHV receptor, MHVR, a biliary glycoprotein (Bgp1a). Under treatment conditions that completely ablated the replication of the parental MHV strains, CC1 antireceptor antibodies did not block MHV-H2 replication. Following expression of MHVR in normally nonpermissive ST and CRFK cells, infection with the parental MHV strains, but not MHV-H2 was observed. To characterize the molecular basis preventing the interaction between MHV-H2 and MHVR, revertants of MHV-H2 (MHV-H2R6, MHV-H2R11) were isolated following a persistent MHV-H2 infection in DBT cells. These revertant viruses efficiently recognized MHVR, however infection of murine cells was resistant to MAb CC1 blockade. In addition, MHV-H2 and the revertant viruses efficiently recognized other Bgp receptors for docking and entry. These data suggest that interspecies transfer may remodel normal virus-receptor interactions that may result in altered virulence, tropism or pathogenesis in the original host.


Assuntos
Glicoproteínas/metabolismo , Vírus da Hepatite Murina/metabolismo , Receptores Virais/metabolismo , Animais , Células CHO , Gatos , Moléculas de Adesão Celular , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Cães , Humanos , Camundongos , Vírus da Hepatite Murina/fisiologia , Fenótipo , Suínos , Células Tumorais Cultivadas , Células Vero
7.
Adv Exp Med Biol ; 440: 43-52, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9782263

RESUMO

A variant Mouse Hepatitis virus (MHV), designated MHV-H2, was isolated by serial passage in mixed cultures of permissive DBT cells and nonpermissive Syrian Hamster Kidney (BHK) cells. MHV-H2 replicated efficiently in hamster, mouse, primate kidney (Vero, Cos 1, Cos 7), and human adenocarcinoma (HRT) cell lines but failed to replicate in porcine testicular (ST), feline kidney (CRFK), and canine kidney (MDCK) cells. To understand the molecular basis for coronavirus cross-species transfer into human cell lines, the replication of MHV-H2 was studied in hepatocellular carcinoma (HepG2) cells which expressed high levels of the human homologue of the normal murine receptor, biliary glycoprotein (Bgp). MHV-H2 replicated efficiently in human HepG2 cells, at low levels in breast carcinoma (MCF7) cells, and poorly, if at all, in human colon adenocarcinoma (LS 174T) cell lines which expressed high levels of carcinoembryonic antigen (CEA). These data suggested that MHV-H2 may utilize the human Bgp homologue as a receptor for entry into HepG2 cells. To further study MHV-H2 receptor utilization in human cell lines, blockade experiments were performed with a panel of different monoclonal or polyclonal antiserum directed against the human CEA genes. Pretreatment of HepG2 cells with a polyclonal antiserum directed against all CEA family members, or with a monoclonal antibody, Kat4c (cd66abde), directed against Bgp1, CGM6, CGM1a, NCA and CEA, significantly reduced virus replication and the capacity of MHV-H2 to infect HepG2 cells. Using another panel of monoclonals with more restricted cross reactivities among the human CEA's, Col-4 and Col-14, but not B6.2 B1.13, Col-1, Col-6 and Col-12 blocked MHV-H2 infection in HepG2 cells. These antibodies did not block sindbis virus (SB) replication in HepG2 cells, or block SB, MHV-A59 or MHV-H2 replication in DBT cells. Monoclonal antibodies Col-4, Col-14, and Kat4c (cd66abde) all reacted strongly with human Bgp and CEA, but displayed variable binding patterns with other CEA genes. Following expression of human Bgp in normally nonpermissive porcine testicular (ST) and feline kidney (CRFK) cells, the cells became susceptible to MHV-H2 infection. These data suggested that phylogenetic homologues of virus receptors represent natural conduits for virus xenotropism and cross-species transfer.


Assuntos
Glicoproteínas/metabolismo , Vírus da Hepatite Murina/metabolismo , Receptores Virais/metabolismo , Animais , Anticorpos/metabolismo , Antígenos CD , Células CHO , Antígeno Carcinoembrionário/metabolismo , Gatos , Moléculas de Adesão Celular , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Cães , Humanos , Camundongos , Vírus da Hepatite Murina/crescimento & desenvolvimento , Especificidade da Espécie , Suínos , Células Tumorais Cultivadas , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA