Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Emerg Top Life Sci ; 7(3): 325-337, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37861103

RESUMO

Repeat expansion disorders (REDs) are monogenic diseases caused by a sequence of repetitive DNA expanding above a pathogenic threshold. A common feature of the REDs is a strong genotype-phenotype correlation in which a major determinant of age at onset (AAO) and disease progression is the length of the inherited repeat tract. Over a disease-gene carrier's life, the length of the repeat can expand in somatic cells, through the process of somatic expansion which is hypothesised to drive disease progression. Despite being monogenic, individual REDs are phenotypically variable, and exploring what genetic modifying factors drive this phenotypic variability has illuminated key pathogenic mechanisms that are common to this group of diseases. Disease phenotypes are affected by the cognate gene in which the expansion is found, the location of the repeat sequence in coding or non-coding regions and by the presence of repeat sequence interruptions. Human genetic data, mouse models and in vitro models have implicated the disease-modifying effect of DNA repair pathways via the mechanisms of somatic mutation of the repeat tract. As such, developing an understanding of these pathways in the context of expanded repeats could lead to future disease-modifying therapies for REDs.


Assuntos
Expansão das Repetições de Trinucleotídeos , Camundongos , Animais , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Idade de Início , Estudos de Associação Genética , Fenótipo , Progressão da Doença
2.
Brain Commun ; 4(6): fcac279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36519153

RESUMO

An important step towards the development of treatments for cognitive impairment in ageing and neurodegenerative diseases is to identify genetic and environmental modifiers of cognitive function and understand the mechanism by which they exert an effect. In Huntington's disease, the most common autosomal dominant dementia, a small number of studies have identified intellectual enrichment, i.e. a cognitively stimulating lifestyle and genetic polymorphisms as potential modifiers of cognitive function. The aim of our study was to further investigate the relationship and interaction between genetic factors and intellectual enrichment on cognitive function and brain atrophy in Huntington's disease. For this purpose, we analysed data from Track-HD, a multi-centre longitudinal study in Huntington's disease gene carriers and focused on the role of intellectual enrichment (estimated at baseline) and the genes FAN1, MSH3, BDNF, COMT and MAPT in predicting cognitive decline and brain atrophy. We found that carrying the 3a allele in the MSH3 gene had a positive effect on global cognitive function and brain atrophy in multiple cortical regions, such that 3a allele carriers had a slower rate of cognitive decline and atrophy compared with non-carriers, in agreement with its role in somatic instability. No other genetic predictor had a significant effect on cognitive function and the effect of MSH3 was independent of intellectual enrichment. Intellectual enrichment also had a positive effect on cognitive function; participants with higher intellectual enrichment, i.e. those who were better educated, had higher verbal intelligence and performed an occupation that was intellectually engaging, had better cognitive function overall, in agreement with previous studies in Huntington's disease and other dementias. We also found that intellectual enrichment interacted with the BDNF gene, such that the positive effect of intellectual enrichment was greater in Met66 allele carriers than non-carriers. A similar relationship was also identified for changes in whole brain and caudate volume; the positive effect of intellectual enrichment was greater for Met66 allele carriers, rather than for non-carriers. In summary, our study provides additional evidence for the beneficial role of intellectual enrichment and carrying the 3a allele in MSH3 in cognitive function in Huntington's disease and their effect on brain structure.

3.
EBioMedicine ; 48: 568-580, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31607598

RESUMO

BACKGROUND: Huntington disease (HD) is caused by an unstable CAG/CAA repeat expansion encoding a toxic polyglutamine tract. Here, we tested the hypotheses that HD outcomes are impacted by somatic expansion of, and polymorphisms within, the HTT CAG/CAA glutamine-encoding repeat, and DNA repair genes. METHODS: The sequence of the glutamine-encoding repeat and the proportion of somatic CAG expansions in blood DNA from participants inheriting 40 to 50 CAG repeats within the TRACK-HD and Enroll-HD cohorts were determined using high-throughput ultra-deep-sequencing. Candidate gene polymorphisms were genotyped using kompetitive allele-specific PCR (KASP). Genotypic associations were assessed using time-to-event and regression analyses. FINDINGS: Using data from 203 TRACK-HD and 531 Enroll-HD participants, we show that individuals with higher blood DNA somatic CAG repeat expansion scores have worse HD outcomes: a one-unit increase in somatic expansion score was associated with a Cox hazard ratio for motor onset of 3·05 (95% CI = 1·94 to 4·80, p = 1·3 × 10-6). We also show that individual-specific somatic expansion scores are associated with variants in FAN1 (pFDR = 4·8 × 10-6), MLH3 (pFDR = 8·0 × 10-4), MLH1 (pFDR = 0·004) and MSH3 (pFDR = 0·009). We also show that HD outcomes are best predicted by the number of pure CAGs rather than total encoded-glutamines. INTERPRETATION: These data establish pure CAG length, rather than encoded-glutamine, as the key inherited determinant of downstream pathophysiology. These findings have implications for HD diagnostics, and support somatic expansion as a mechanistic link for genetic modifiers of clinical outcomes, a driver of disease, and potential therapeutic target in HD and related repeat expansion disorders. FUNDING: CHDI Foundation.


Assuntos
Reparo do DNA , Predisposição Genética para Doença , Proteína Huntingtina/genética , Doença de Huntington/genética , Expansão das Repetições de Trinucleotídeos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Éxons , Feminino , Genótipo , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adulto Jovem
4.
PLoS One ; 12(12): e0189891, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29272284

RESUMO

BACKGROUND: Huntington's disease (HD) is an autosomal dominant neurodegenerative condition caused by an expanded CAG repeat in the gene encoding huntingtin (HTT). Optimizing peripheral quantification of huntingtin throughout the course of HD is valuable not only to illuminate the natural history and pathogenesis of disease, but also to detect peripheral effects of drugs in clinical trial. RATIONALE: We previously demonstrated that mutant HTT (mHTT) was significantly elevated in purified HD patient leukocytes compared with controls and that these levels track disease progression. Our present study investigates whether the same result can be achieved with a simpler and more scalable collection technique that is more suitable for clinical trials. METHODS: We collected whole blood at 133 patient visits in two sample sets and generated peripheral blood mononuclear cells (PBMCs). Levels of mHTT, as well as N-, and C-terminal and mid-region huntingtin were measured in the PBMCs using ELISA-based Meso Scale Discovery (MSD) electrochemiluminescence immunoassay platforms, and we evaluated the relationship between different HTT species, disease stage, and brain atrophy on magnetic resonance imaging. CONCLUSIONS: The assays were sensitive and accurate. We confirm our previous findings that mHTT increases with advancing disease stage in patient PBMCs, this time using a simple collection protocol and scalable assay.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Proteína Huntingtina/sangue , Doença de Huntington/sangue , Leucócitos/metabolismo , Encéfalo/diagnóstico por imagem , Estudos Transversais , Eletroquímica , Humanos , Proteína Huntingtina/genética , Doença de Huntington/diagnóstico por imagem , Luminescência , Mutação
5.
Sci Rep ; 7: 44849, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28322270

RESUMO

There is widespread transcriptional dysregulation in Huntington's disease (HD) brain, but analysis is inevitably limited by advanced disease and postmortem changes. However, mutant HTT is ubiquitously expressed and acts systemically, meaning blood, which is readily available and contains cells that are dysfunctional in HD, could act as a surrogate for brain tissue. We conducted an RNA-Seq transcriptomic analysis using whole blood from two HD cohorts, and performed gene set enrichment analysis using public databases and weighted correlation network analysis modules from HD and control brain datasets. We identified dysregulated gene sets in blood that replicated in the independent cohorts, correlated with disease severity, corresponded to the most significantly dysregulated modules in the HD caudate, the most prominently affected brain region, and significantly overlapped with the transcriptional signature of HD myeloid cells. High-throughput sequencing technologies and use of gene sets likely surmounted the limitations of previously inconsistent HD blood expression studies. Our results suggest transcription is disrupted in peripheral cells in HD through mechanisms that parallel those in brain. Immune upregulation in HD overlapped with Alzheimer's disease, suggesting a common pathogenic mechanism involving macrophage phagocytosis and microglial synaptic pruning, and raises the potential for shared therapeutic approaches.


Assuntos
Doença de Alzheimer/etiologia , Encéfalo/metabolismo , Regulação da Expressão Gênica , Doença de Huntington/etiologia , Imunidade/genética , Transcriptoma , Adulto , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Biomarcadores , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Huntington/sangue , Doença de Huntington/diagnóstico , Doença de Huntington/metabolismo , Masculino , Pessoa de Meia-Idade , Células Mieloides/imunologia , Células Mieloides/metabolismo , Córtex Pré-Frontal/metabolismo , Transdução de Sinais , Adulto Jovem
6.
Hum Mol Genet ; 25(14): 2893-2904, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27170315

RESUMO

Innate immune activation beyond the central nervous system is emerging as a vital component of the pathogenesis of neurodegeneration. Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The systemic innate immune system is thought to act as a modifier of disease progression; however, the molecular mechanisms remain only partially understood. Here we use RNA-sequencing to perform whole transcriptome analysis of primary monocytes from thirty manifest HD patients and thirty-three control subjects, cultured with and without a proinflammatory stimulus. In contrast with previous studies that have required stimulation to elicit phenotypic abnormalities, we demonstrate significant transcriptional differences in HD monocytes in their basal, unstimulated state. This includes previously undetected increased resting expression of genes encoding numerous proinflammatory cytokines, such as IL6 Further pathway analysis revealed widespread resting enrichment of proinflammatory functional gene sets, while upstream regulator analysis coupled with Western blotting suggests that abnormal basal activation of the NFĸB pathway plays a key role in mediating these transcriptional changes. That HD myeloid cells have a proinflammatory phenotype in the absence of stimulation is consistent with a priming effect of mutant huntingtin, whereby basal dysfunction leads to an exaggerated inflammatory response once a stimulus is encountered. These data advance our understanding of mutant huntingtin pathogenesis, establish resting myeloid cells as a key source of HD immune dysfunction, and further demonstrate the importance of systemic immunity in the potential treatment of HD and the wider study of neurodegeneration.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Imunidade Inata/genética , Inflamação/genética , Ativação Transcricional/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteína Huntingtina/biossíntese , Doença de Huntington/patologia , Inflamação/patologia , Interleucina-6/genética , Células Mieloides/metabolismo , Células Mieloides/patologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Transdução de Sinais , Expansão das Repetições de Trinucleotídeos/genética
7.
Neurology ; 82(4): 292-9, 2014 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-24363131

RESUMO

OBJECTIVE: In many cases where Huntington disease (HD) is suspected, the genetic test for HD is negative: these are known as HD phenocopies. A repeat expansion in the C9orf72 gene has recently been identified as a major cause of familial and sporadic frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Our objective was to determine whether this mutation causes HD phenocopies. METHODS: A cohort of 514 HD phenocopy patients were analyzed for the C9orf72 expansion using repeat primed PCR. In cases where the expansion was found, Southern hybridization was performed to determine expansion size. Clinical case notes were reviewed to determine the phenotype of expansion-positive cases. RESULTS: Ten subjects (1.95%) had the expansion, making it the most common identified genetic cause of HD phenocopy presentations. The size of expansion was not significantly different from that associated with other clinical presentations of C9orf72 expanded cases. The C9orf72 expansion-positive subjects were characterized by the presence of movement disorders, including dystonia, chorea, myoclonus, tremor, and rigidity. Furthermore, the age at onset in this cohort was lower than previously reported for subjects with the C9orf72 expansion and included one case with pediatric onset. DISCUSSION: This study extends the known phenotype of the C9orf72 expansion in both age at onset and movement disorder symptoms. We propose a revised clinico-genetic algorithm for the investigation of HD phenocopy patients based on these data.


Assuntos
Expansão das Repetições de DNA/genética , Doença de Huntington/genética , Proteínas/genética , Adolescente , Adulto , Idade de Início , Proteína C9orf72 , Criança , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/genética , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Doença de Huntington/complicações , Imageamento por Ressonância Magnética , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Fenótipo , Índice de Gravidade de Doença , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...