Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 17(11): 1389-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25167890

RESUMO

Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.


Assuntos
Flores/genética , Magnoliopsida/genética , Filogenia , Polinização , Animais , Abelhas , Dípteros , Modelos Biológicos , Néctar de Plantas/química
2.
Ecology ; 90(7): 1840-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19694133

RESUMO

Higher trophic level species such as parasites, parasitoids, and pathogens are frequently ignored in community studies, despite playing key roles in the structure, function, and stability of ecological communities. Furthermore, such species are typically among the last in a community to reestablish due to their reliance upon lower trophic level resources and a requirement for persistent, stable ecological conditions. Consequently their presence alone can be indicative of healthy ecosystems. Using replicated, quantitative food webs we studied the impacts of a restoration treatment upon the interactions of a tri-trophic community consisting of plants, their bumble bee pollinators, and the parasites, parasitoids, and pathogens of the bumble bees at heathland sites. We found the lower trophic levels of the community successfully reinstated at restored relative to control sites. However the abundance, load per host, prevalence of parasitism, prevalence of superparasitism, and host range of a key dipteran parasitoid of the family Conopidae were all significantly reduced in restored heathlands. Potential causes for this incomplete reestablishment at restored sites include the lag in floral resources due to differences in floral species composition, and the reduced ability of this parasitoid species in accessing host resources relative to other natural enemy species present in these communities. Moreover the incomplete reinstatement of the natural enemy community was found to significantly reduce levels of network vulnerability (a measure of how vulnerable prey is to being consumed) at restored sites relative to ancient, control networks.


Assuntos
Abelhas/parasitologia , Ecossistema , Ericaceae/fisiologia , Fabaceae/fisiologia , Animais , Conservação dos Recursos Naturais , Dípteros/fisiologia , Eucariotos/fisiologia , Interações Hospedeiro-Parasita , Himenópteros/fisiologia , Ácaros/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...