Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Channels (Austin) ; 16(1): 230-243, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239534

RESUMO

As part of a drug discovery effort to identify potent inhibitors of NaV1.7 for the treatment of pain, we observed that inhibitors produced unexpected cardiovascular and respiratory effects in vivo. Specifically, inhibitors administered to rodents produced changes in cardiovascular parameters and respiratory cessation. We sought to determine the mechanism of the in vivo adverse effects by studying the selectivity of the compounds on NaV1.5, NaV1.4, and NaV1.6 in in vitro and ex vivo assays. Inhibitors lacking sufficient NaV1.7 selectivity over NaV1.6 were associated with respiratory cessation after in vivo administration to rodents. Effects on respiratory rate in rats were consistent with effects in an ex vivo hemisected rat diaphragm model and in vitro NaV1.6 potency. Furthermore, direct blockade of the phrenic nerve signaling was observed at exposures known to cause respiratory cessation in rats. Collectively, these results support a significant role for NaV1.6 in phrenic nerve signaling and respiratory function.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Insuficiência Respiratória , Animais , Dor , Nervo Frênico , Ratos , Insuficiência Respiratória/tratamento farmacológico
2.
J Med Chem ; 65(1): 485-496, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34931831

RESUMO

Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels in vivo. The article describes the design of analogues of ProTx-II that safely display systemic in vivo blocking of Nav1.7, resulting in a latency of response to thermal stimuli in rodents. The new designs achieve a better in vivo profile by improving ion channel selectivity and limiting the ability of the peptides to cause mast cell degranulation. The design rationale, structural modeling, in vitro profiles, and rat tail flick outcomes are disclosed and discussed.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Dor/tratamento farmacológico , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/síntese química , Animais , Degranulação Celular/efeitos dos fármacos , Cistina/química , Desenho de Fármacos , Temperatura Alta , Mastócitos/efeitos dos fármacos , Modelos Moleculares , Medição da Dor/efeitos dos fármacos , Ratos , Venenos de Aranha/farmacologia
3.
Neuropharmacology ; 197: 108754, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389398

RESUMO

Alzheimer's disease (AD) is a profoundly debilitating neurodegenerative disorder characterized most notably by progressive cognitive decline, but also agitation and behavioral disturbances that are extremely disruptive to patient and caregiver. Current pharmacological treatments for these symptoms have limited efficacy and significant side effects. We have recently reported the discovery of Compound 24, an M4 positive allosteric modulator (PAM) that is potent, highly selective, and devoid of cholinergic-like side effects in rats. In order to further evaluate the translatability of the effects of compound 24 in primates, here we describe the effect of Compound 24 on three behavioral and cognition assays in rhesus monkeys, the stimulant induced motor activity (SIMA) assay, the object retrieval detour task (ORD), and the visuo-spatial paired-associates learning (vsPAL) task. As far as we know, this is the first such characterization of an M4 PAM in non-human primate. Compound 24 and the clinical standard olanzapine attenuated amphetamine induced hyperactivity to a similar degree. In addition, Compound 24 demonstrated procognitive effects in scopolamine-impaired ORD and vsPAL, and these effects were of similar magnitude to donepezil. These findings suggest that M4 PAMs may be beneficial to diseases such as Alzheimer's disease and schizophrenia, which are marked by behavioral disturbances as well as deficits in cognitive function.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Comportamento Animal/efeitos dos fármacos , Colinérgicos/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Receptor Muscarínico M4/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Psicologia do Esquizofrênico , Anfetamina/antagonistas & inibidores , Anfetamina/farmacologia , Animais , Aprendizagem por Associação/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central , Colinérgicos/farmacocinética , Transtornos Cognitivos/psicologia , Hipercinese/induzido quimicamente , Hipercinese/prevenção & controle , Macaca mulatta , Masculino , Atividade Motora/efeitos dos fármacos , Olanzapina/farmacologia , Orientação/efeitos dos fármacos
4.
Sci Transl Med ; 13(594)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011626

RESUMO

Humans with loss-of-function mutations in the Nav1.7 channel gene (SCN9A) show profound insensitivity to pain, whereas those with gain-of-function mutations can have inherited pain syndromes. Therefore, inhibition of the Nav1.7 channel with a small molecule has been considered a promising approach for the treatment of various human pain conditions. To date, clinical studies conducted using selective Nav1.7 inhibitors have not provided analgesic efficacy sufficient to warrant further investment. Clinical studies to date used multiples of in vitro IC50 values derived from electrophysiological studies to calculate anticipated human doses. To increase the chance of clinical success, we developed rhesus macaque models of action potential propagation, nociception, and olfaction, to measure Nav1.7 target modulation in vivo. The potent and selective Nav1.7 inhibitors SSCI-1 and SSCI-2 dose-dependently blocked C-fiber nociceptor conduction in microneurography studies and inhibited withdrawal responses to noxious heat in rhesus monkeys. Pharmacological Nav1.7 inhibition also reduced odor-induced activation of the olfactory bulb (OB), measured by functional magnetic resonance imaging (fMRI) studies consistent with the anosmia reported in Nav1.7 loss-of-function patients. These data demonstrate that it is possible to measure Nav1.7 target modulation in rhesus macaques and determine the plasma concentration required to produce a predetermined level of inhibition. The calculated plasma concentration for preclinical efficacy could be used to guide human efficacious exposure estimates. Given the translatable nature of the assays used, it is anticipated that they can be also used in phase 1 clinical studies to measure target modulation and aid in the interpretation of phase 1 clinical data.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Dor , Animais , Humanos , Macaca mulatta , Nociceptividade , Nociceptores
5.
Front Pharmacol ; 12: 786078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002718

RESUMO

MK-2075 is a small-molecule selective inhibitor of the NaV1.7 channel investigated for the treatment of postoperative pain. A translational strategy was developed for MK-2075 to quantitatively interrelate drug exposure, target modulation, and the desired pharmacological response in preclinical animal models for the purpose of human translation. Analgesics used as a standard of care in postoperative pain were evaluated in preclinical animal models of nociceptive behavior (mouse tail flick latency and rhesus thermode heat withdrawal) to determine the magnitude of pharmacodynamic (PD) response at plasma concentrations associated with efficacy in the clinic. MK-2075 was evaluated in those same animal models to determine the concentration of MK-2075 required to achieve the desired level of response. Translation of MK-2075 efficacious concentrations in preclinical animal models to a clinical PKPD target in humans was achieved by accounting for species differences in plasma protein binding and in vitro potency against the NaV1.7 channel. Estimates of human pharmacokinetic (PK) parameters were obtained from allometric scaling of a PK model from preclinical species and used to predict the dose required to achieve the clinical exposure. MK-2075 exposure-response in a preclinical target modulation assay (rhesus olfaction) was characterized using a computational PKPD model which included a biophase compartment to account for the observed hysteresis. Translation of this model to humans was accomplished by correcting for species differences in PK NaV1.7 potency, and plasma protein binding while assuming that the kinetics of distribution to the target site is the same between humans and rhesus monkeys. This enabled prediction of the level of target modulation anticipated to be achieved over the dosing interval at the projected clinical efficacious human dose. Integration of these efforts into the early development plan informed clinical study design and decision criteria.

6.
J Pain Res ; 11: 735-741, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692626

RESUMO

INTRODUCTION: The development of novel analgesics to treat acute or chronic pain has been a challenge due to a lack of translatable measurements. Preclinical end points with improved translatability are necessary to more accurately inform clinical testing paradigms, which may help guide selection of viable drug candidates. METHODS: In this study, a nonhuman primate biomarker which is sensitive to standard analgesics at clinically relevant plasma concentrations, can differentiate analgesia from sedation and utilizes a protocol very similar to that which can be employed in human clinical studies is described. Specifically, acute heat stimuli were delivered to the volar forearm using a contact heat thermode in the same manner as the clinical setting. RESULTS: Clinically efficacious exposures of morphine, fentanyl, and tramadol produced robust analgesic effects, whereas doses of diazepam that produce sedation had no effect. CONCLUSION: We propose that this assay has predictive utility that can help improve the probability of success for developing novel analgesics.

7.
Bioorg Med Chem Lett ; 27(12): 2695-2701, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465100

RESUMO

A series of substituted indoles were examined as selective inhibitors of tropomyosin-related kinase receptor A (TrkA), a therapeutic target for the treatment of pain. An SAR optimization campaign based on ALIS screening lead compound 1 is reported.


Assuntos
Desenho de Fármacos , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Receptor trkA/metabolismo , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 27(12): 2683-2688, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465103

RESUMO

Studies on human genetics have suggested that inhibitors of the Nav1.7 voltage-gated sodium channel hold considerable promise as therapies for the treatment of chronic pain syndromes. Herein, we report novel, peripherally-restricted benzoxazolinone aryl sulfonamides as potent Nav1.7 inhibitors with excellent selectivity against the Nav1.5 isoform, which is expressed in the heart muscle. Elaboration of initial lead compound 3d afforded exemplar 13, which featured attractive physicochemical properties, outstanding lipophilic ligand efficiency and pharmacological selectivity against Nav1.5 exceeding 1000-fold. Key structure-activity relationships associated with oral bioavailability were leveraged to discover compound 17, which exhibited a comparable potency/selectivity profile as well as full efficacy following oral administration in a preclinical model indicative of antinociceptive behavior.


Assuntos
Analgésicos/farmacologia , Benzoxazóis/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/tratamento farmacológico , Sulfonamidas/farmacologia , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/química , Animais , Benzoxazóis/administração & dosagem , Benzoxazóis/química , Disponibilidade Biológica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Formaldeído/administração & dosagem , Humanos , Camundongos , Estrutura Molecular , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Dor/induzido quimicamente , Ratos , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/química
9.
J Neurosci Methods ; 282: 34-42, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28279735

RESUMO

BACKGROUND: NGF signaling through TrkA triggers pathways involved in a wide range of biological effects. Clinical trials targeting either NGF or TrkA are ongoing to treat various diseases in the areas of oncology, neuroscience, and for pain, but there is no described measure of target engagement of TrkA in these studies. NEW METHOD: We have developed custom ELISA assays to measure NGF-induced phosphorylation of TrkA specific for rodent and human receptors. Optimized tissue processing methods allow for detection in both the brain and in skin. In addition, TrkB and TrkC assays have been in established to evaluate selectivity against other neurotrophin receptors. RESULTS: In a preclinical NGF-induced pain model, we show that pre-dosing with a TrkA inhibitor prevents phosphorylation of TrkA in the skin at a dose that is efficacious in reversal of thermal hypersensitivity. In addition, we show data in non-human primate and human skin supporting the potential use of this approach to enable translational target engagement. Comparison with existing methods: Existing methods involve animal models expressing TrkA tumors or injection of over-expressing TrkA recombinant cells into animals. Our method can measure target engagement in both normal and disease tissues in preclinical animal models and human skin. CONCLUSIONS: We have developed methods to assess target engagement for drug programs aimed at disrupting NGF-induced TrkA signaling. This includes preclinical determination of selectivity against other neurotrophin receptors and estimation of functional peripheral restriction. Preliminary data supports this method can be translated into a clinical pharmacodynamic readout using human skin biopsies.


Assuntos
Analgésicos/farmacocinética , Ensaio de Imunoadsorção Enzimática/métodos , Fator de Crescimento Neural/metabolismo , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Analgésicos/farmacologia , Animais , Biomarcadores Farmacológicos/metabolismo , Biópsia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Dor/tratamento farmacológico , Dor/metabolismo , Fosforilação/efeitos dos fármacos , Projetos Piloto , Ratos , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(3): E297-E306, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28039433

RESUMO

Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of-but adjacent to-the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/antagonistas & inibidores , Receptor trkA/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/síntese química , Receptor trkA/genética , Receptor trkB/antagonistas & inibidores , Receptor trkB/química , Receptor trkB/genética , Receptor trkC/antagonistas & inibidores , Receptor trkC/química , Receptor trkC/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
11.
J Med Chem ; 57(13): 5800-16, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24914455

RESUMO

We have identified several series of small molecule inhibitors of TrkA with unique binding modes. The starting leads were chosen to maximize the structural and binding mode diversity derived from a high throughput screen of our internal compound collection. These leads were optimized for potency and selectivity employing a structure based drug design approach adhering to the principles of ligand efficiency to maximize binding affinity without overly relying on lipophilic interactions. This endeavor resulted in the identification of several small molecule pan-Trk inhibitor series that exhibit high selectivity for TrkA/B/C versus a diverse panel of kinases. We have also demonstrated efficacy in both inflammatory and neuropathic pain models upon oral dosing. Herein we describe the identification process, hit-to-lead progression, and binding profiles of these selective pan-Trk kinase inhibitors.


Assuntos
Dor Crônica/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Receptor trkA/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Indóis/química , Indóis/farmacocinética , Ligantes , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Ratos , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacocinética , Ureia/análogos & derivados , Ureia/química , Ureia/farmacocinética
13.
Bioorg Med Chem Lett ; 21(8): 2359-64, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21420857

RESUMO

A novel series of decahydroquinoline CB2 agonists is described. Optimization of the amide substituent led to improvements in CB2/CB1 selectivity as well as physical properties. Two key compounds were examined in the rat CFA model of acute inflammatory pain. A moderately selective CB2 agonist was active in this model. A CB2 agonist lacking functional CB1 activity was inactive in this model despite high in vivo exposure both peripherally and centrally.


Assuntos
Amidas/química , Analgésicos/química , Quinolinas/química , Receptor CB2 de Canabinoide/agonistas , Amidas/síntese química , Amidas/uso terapêutico , Analgésicos/síntese química , Analgésicos/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Dor/tratamento farmacológico , Ratos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 21(8): 2354-8, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21420860

RESUMO

A new series of imidazopyridine CB2 agonists is described. Structural optimization improved CB2/CB1 selectivity in this series and conferred physical properties that facilitated high in vivo exposure, both centrally and peripherally. Administration of a highly selective CB2 agonist in a rat model of analgesia was ineffective despite substantial CNS exposure, while administration of a moderately selective CB2/CB1 agonist exhibited significant analgesic effects.


Assuntos
Analgésicos/química , Piridinas/química , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Analgésicos/síntese química , Analgésicos/uso terapêutico , Animais , Modelos Animais de Doenças , Adjuvante de Freund/farmacologia , Humanos , Hiperalgesia/tratamento farmacológico , Piridinas/síntese química , Piridinas/uso terapêutico , Ratos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
15.
Bioorg Med Chem Lett ; 21(9): 2646-9, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21257308

RESUMO

The Merck Fragment Library was screened versus acid-sensing ion channel 3 (ASIC3), a novel target for the treatment of pain. Fragment hits were optimized using two strategies, and potency was improved from 0.7 mM to 3 µM with retention of good ligand efficiency and incorporation of reasonable physical properties, off-target profile, and rat pharmacokinetics.


Assuntos
Descoberta de Drogas , Fenômenos Eletrofisiológicos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Canais Iônicos Sensíveis a Ácido , Animais , Estrutura Molecular , Fragmentos de Peptídeos , Ratos , Bibliotecas de Moléculas Pequenas , Canais de Sódio
17.
Mol Pain ; 4: 48, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18954467

RESUMO

BACKGROUND: Safe and effective treatment for chronic inflammatory and neuropathic pain remains a key unmet medical need for many patients. The recent discovery and description of the transient receptor potential family of receptors including TRPV1 and TRPA1 has provided a number of potential new therapeutic targets for treating chronic pain. Recent reports have suggested that TRPA1 may play an important role in acute formalin and CFA induced pain. The current study was designed to further explore the therapeutic potential of pharmacological TRPA1 antagonism to treat inflammatory and neuropathic pain. RESULTS: The in vitro potencies of HC-030031 versus cinnamaldehyde or allyl isothiocyanate (AITC or Mustard oil)-induced TRPA1 activation were 4.9 +/- 0.1 and 7.5 +/- 0.2 microM respectively (IC50). These findings were similar to the previously reported IC50 of 6.2 microM against AITC activation of TRPA1 1. In the rat, oral administration of HC-030031 reduced AITC-induced nocifensive behaviors at a dose of 100 mg/kg. Moreover, oral HC-030031 (100 mg/kg) significantly reversed mechanical hypersensitivity in the more chronic models of Complete Freunds Adjuvant (CFA)-induced inflammatory pain and the spinal nerve ligation model of neuropathic pain. CONCLUSION: Using oral administration of the selective TRPA1 antagonist HC-030031, our results demonstrated that TRPA1 plays an important role in the mechanisms responsible for mechanical hypersensitivity observed in inflammatory and neuropathic pain models. These findings suggested that TRPA1 antagonism may be a suitable new approach for the development of a potent and selective therapeutic agent to treat both inflammatory and neuropathic pain.


Assuntos
Acetanilidas/farmacologia , Analgésicos/farmacologia , Canais de Cálcio/fisiologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Neuralgia/tratamento farmacológico , Dor/tratamento farmacológico , Purinas/farmacologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Anquirinas , Linhagem Celular , Modelos Animais de Doenças , Humanos , Inflamação , Masculino , Neuralgia/etiologia , Neuralgia/patologia , Dor/etiologia , Dor/patologia , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Canais de Cátion TRPC
18.
Prog Brain Res ; 163: 199-216, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17765720

RESUMO

Network oscillations are proposed to provide the framework for the ongoing neural computations of the brain. Thus, an important aspect of understanding the functional roles of various cell classes in the brain is to understand the relationship of cellular activity to the ongoing oscillations. While many studies have characterized the firing properties of cells in the hippocampal network including granule cells, pyramidal cells and interneurons, information about the activity of dentate mossy cells in the intact brain is scant. Here we review the currently available information and describe biophysical properties and network-related firing patterns of mossy cells in vivo. These new observations will assist in the extracellular identification of this unique cell type and help elucidate their functional role in behaving animals.


Assuntos
Hipocampo/citologia , Fibras Musgosas Hipocampais/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Rede Nervosa/citologia , Neurônios/classificação
19.
Brain Struct Funct ; 212(1): 75-83, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17717699

RESUMO

The three-dimensional intrahippocampal distribution of axon collaterals of an in vivo filled CA3c pyramidal cell was investigated. The neuron was filled with biocytin in an anesthetized rat and the collaterals were reconstructed with the aid of a NeuroLucida program from 48 coronal sections. The total length of the axon collaterals exceeded 0.5 m, with almost 40,000 synaptic boutons. The majority of the collaterals were present in the CA1 region (70.0%), whereas 27.6% constituted CA3 recurrent collaterals with the remaining minority of axons returning to the dentate gyrus. The axon arbor covered more than two thirds of the longitudinal axis of the hippocampus, and the terminals were randomly distributed both locally and distally from the soma. We suggest that the CA3 system can be conceptualized as a single-module, in which nearby and distant targets are contacted by the same probability (similar to a mathematically defined random graph). This arrangement, in combination with the parallel input granule cells and parallel output CA1 pyramidal cells, appears ideal for segregation and integration of information and memories.


Assuntos
Axônios/ultraestrutura , Hipocampo/citologia , Terminações Pré-Sinápticas/ultraestrutura , Células Piramidais/citologia , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Mapeamento Encefálico/métodos , Forma Celular/fisiologia , Eletrofisiologia/métodos , Hipocampo/fisiologia , Citometria por Imagem/métodos , Imageamento Tridimensional , Lisina/análogos & derivados , Vias Neurais/citologia , Vias Neurais/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Software , Coloração e Rotulagem/métodos , Sinapses/fisiologia , Sinapses/ultraestrutura
20.
J Comput Neurosci ; 23(1): 39-58, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17273940

RESUMO

We investigate the use of extracellular action potential (EAP) recordings for biophysically faithful compartmental models. We ask whether constraining a model to fit the EAP is superior to matching the intracellular action potential (IAP). In agreement with previous studies, we find that the IAP method under-constrains the parameters. As a result, significantly different sets of parameters can have virtually identical IAP's. In contrast, the EAP method results in a much tighter constraint. We find that the distinguishing characteristics of the waveform--but not its amplitude-resulting from the distribution of active conductances are fairly invariant to changes of electrode position and detailed cellular morphology. Based on these results, we conclude that EAP recordings are an excellent source of data for the purpose of constraining compartmental models.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Células Piramidais/citologia , Células Piramidais/fisiologia , Animais , Condutividade Elétrica , Estimulação Elétrica , Hipocampo/citologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...