Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(8): 992-998, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37365226

RESUMO

Conventional antiferroelectric materials with atomic-scale anti-aligned dipoles undergo a transition to a ferroelectric (FE) phase under strong electric fields. The moiré superlattice formed in the twisted stacks of van der Waals crystals exhibits polar domains alternating in moiré length with anti-aligned dipoles. In this moiré domain antiferroelectic (MDAF) arrangement, the distribution of electric dipoles is distinguished from that of two-dimensional FEs, suggesting dissimilar domain dynamics. Here we performed an operando transmission electron microscopy investigation on twisted bilayer WSe2 to observe the polar domain dynamics in real time. We find that the topological protection, provided by the domain wall network, prevents the MDAF-to-FE transition. As one decreases the twist angle, however, this transition occurs as the domain wall network disappears. Exploiting stroboscopic operando transmission electron microscopy on the FE phase, we measure a maximum domain wall velocity of 300 µm s-1. Domain wall pinnings by various disorders limit the domain wall velocity and cause Barkhausen noises in the polarization hysteresis loop. Atomic-scale analysis of the pinning disorders provides structural insight on how to improve the switching speed of van der Waals FEs.

2.
ACS Nano ; 15(11): 18113-18124, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34734700

RESUMO

Charge doping to Mott insulators is critical to realize high-temperature superconductivity, quantum spin liquid state, and Majorana fermion, which would contribute to quantum computation. Mott insulators also have a great potential for optoelectronic applications; however, they showed insufficient photoresponse in previous reports. To enhance the photoresponse of Mott insulators, charge doping is a promising strategy since it leads to effective modification of electronic structure near the Fermi level. Intercalation, which is the ion insertion into the van der Waals gap of layered materials, is an effective charge-doping method without defect generation. Herein, we showed significant enhancement of optoelectronic properties of a layered Mott insulator, α-RuCl3, through electron doping by organic cation intercalation. The electron-doping results in substantial electronic structure change, leading to the bandgap shrinkage from 1.2 eV to 0.7 eV. Due to localized excessive electrons in RuCl3, distinct density of states is generated in the valence band, leading to the optical absorption change rather than metallic transition even in substantial doping concentration. The stable near-infrared photodetector using electronic modulated RuCl3 showed 50 times higher photoresponsivity and 3 times faster response time compared to those of pristine RuCl3, which contributes to overcoming the disadvantage of a Mott insulator as a promising optoelectronic device and expanding the material libraries.

3.
Nature ; 595(7865): 48-52, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194017

RESUMO

One of the first theoretically predicted manifestations of strong interactions in many-electron systems was the Wigner crystal1-3, in which electrons crystallize into a regular lattice. The crystal can melt via either thermal or quantum fluctuations4. Quantum melting of the Wigner crystal is predicted to produce exotic intermediate phases5,6 and quantum magnetism7,8 because of the intricate interplay of Coulomb interactions and kinetic energy. However, studying two-dimensional Wigner crystals in the quantum regime has often required a strong magnetic field9-11 or a moiré superlattice potential12-15, thus limiting access to the full phase diagram of the interacting electron liquid. Here we report the observation of bilayer Wigner crystals without magnetic fields or moiré potentials in an atomically thin transition metal dichalcogenide heterostructure, which consists of two MoSe2 monolayers separated by hexagonal boron nitride. We observe optical signatures of robust correlated insulating states at symmetric (1:1) and asymmetric (3:1, 4:1 and 7:1) electron doping of the two MoSe2 layers at cryogenic temperatures. We attribute these features to bilayer Wigner crystals composed of two interlocked commensurate triangular electron lattices, stabilized by inter-layer interaction16. The Wigner crystal phases are remarkably stable, and undergo quantum and thermal melting transitions at electron densities of up to 6 × 1012 per square centimetre and at temperatures of up to about 40 kelvin. Our results demonstrate that an atomically thin heterostructure is a highly tunable platform for realizing many-body electronic states and probing their liquid-solid and magnetic quantum phase transitions4-8,17.

4.
Nat Mater ; 20(4): 480-487, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398121

RESUMO

Moiré superlattices in twisted van der Waals materials have recently emerged as a promising platform for engineering electronic and optical properties. A major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate direct imaging of the moiré structure with optical and electronic properties. Here we develop a secondary electron microscope technique to directly image stacking domains in fully functional van der Waals heterostructure devices. After demonstrating the imaging of AB/BA and ABA/ABC domains in multilayer graphene, we employ this technique to investigate reconstructed moiré patterns in twisted WSe2/WSe2 bilayers and directly correlate the increasing moiré periodicity with the emergence of two distinct exciton species in photoluminescence measurements. These states can be tuned individually through electrostatic gating and feature different valley coherence properties. We attribute our observations to the formation of an array of two intralayer exciton species that reside in alternating locations in the superlattice, and open up new avenues to realize tunable exciton arrays in twisted van der Waals heterostructures, with applications in quantum optoelectronics and explorations of novel many-body systems.

5.
Nat Nanotechnol ; 15(9): 750-754, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32661373

RESUMO

Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices1, enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping2-5, host Mott insulating and superconducting states6 and act as unique Hubbard systems7-9 whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures feature atomic reconstruction and domain formation10-14. However, due to the nanoscale size of moiré domains, the effects of atomic reconstruction on the electronic and excitonic properties have not been systematically investigated. Here we use near-0°-twist-angle MoSe2/MoSe2 bilayers with large rhombohedral AB/BA domains15 to directly probe the excitonic properties of individual domains with far-field optics. We show that this system features broken mirror/inversion symmetry, with the AB and BA domains supporting interlayer excitons with out-of-plane electric dipole moments in opposite directions. The dipole orientation of ground-state Γ-K interlayer excitons can be flipped with electric fields, while higher-energy K-K interlayer excitons undergo field-asymmetric hybridization with intralayer K-K excitons. Our study reveals the impact of crystal symmetry on TMD excitons and points to new avenues for realizing topologically non-trivial systems16,17, exotic metasurfaces18, collective excitonic phases19 and quantum emitter arrays20,21 via domain-pattern engineering.

6.
Phys Rev Lett ; 124(21): 217403, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530686

RESUMO

The twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in twisted WSe_{2}/WSe_{2} bilayers exhibit a high (>60%) degree of circular polarization (DOCP) and long valley lifetimes (>40 ns) at zero electric and magnetic fields. The valley lifetime can be tuned by more than 3 orders of magnitude via electrostatic doping, enabling switching of the DOCP from ∼80% in the n-doped regime to <5% in the p-doped regime. These results open up new avenues for tunable chiral light-matter interactions, enabling novel device schemes that exploit the valley degree of freedom.

7.
Sci Adv ; 5(7): eaaw3180, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31360767

RESUMO

We report wafer-scale growth of atomically thin, three-dimensional (3D) van der Waals (vdW) semiconductor membranes. By controlling the growth kinetics in the near-equilibrium limit during metal-organic chemical vapor depositions of MoS2 and WS2 monolayer (ML) crystals, we have achieved conformal ML coverage on diverse 3D texture substrates, such as periodic arrays of nanoscale needles and trenches on quartz and SiO2/Si substrates. The ML semiconductor properties, such as channel resistivity and photoluminescence, are verified to be seamlessly uniform over the 3D textures and are scalable to wafer scale. In addition, we demonstrated that these 3D films can be easily delaminated from the growth substrates to form suspended 3D semiconductor membranes. Our work suggests that vdW ML semiconductor films can be useful platforms for patchable membrane electronics with atomic precision, yet large areas, on arbitrary substrates.

8.
Nano Lett ; 19(3): 1814-1820, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30779586

RESUMO

We have achieved heteroepitaxial stacking of a van der Waals ( vdW) monolayer metal, 1T'-WTe2, and a semiconductor, 2H-WSe2, in which a distinctively low contact barrier was established across a clean epitaxial vdW gap. Our epitaxial 1T'-WTe2 films were identified as a semimetal by low temperature transport and showed the robust breakdown current density of 5.0 × 107 A/cm2. In comparison with a series of planar metal contacts, our epitaxial vdW contact was identified to possess intrinsic Schottky barrier heights below 100 meV for both electron and hole injections, contributing to superior ambipolar field-effect transistor (FET) characteristics, i.e., higher FET mobilities and higher on-off current ratios at smaller threshold gate voltages. We discuss our observations around the critical roles of the epitaxial vdW heterointerfaces, such as incommensurate stacking sequences and absence of extrinsic interfacial defects that are inaccessible by other contact methods.

9.
Nat Nanotechnol ; 12(11): 1064-1070, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28920962

RESUMO

Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T') and semiconducting (2H) MoTe2 crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.

10.
Nat Commun ; 7: 12011, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27323662

RESUMO

In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ∼1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K(-1) for 16-nm-thick samples at 300 K.

11.
Nat Commun ; 7: 10768, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911982

RESUMO

The 1s exciton--the ground state of a bound electron-hole pair--is central to understanding the photoresponse of monolayer transition metal dichalcogenides. Above the 1s exciton, recent visible and near-infrared investigations have revealed that the excited excitons are much richer, exhibiting a series of Rydberg-like states. A natural question is then how the internal excitonic transitions are interrelated on photoexcitation. Accessing these intraexcitonic transitions, however, demands a fundamentally different experimental tool capable of probing optical transitions from 1s 'bright' to np 'dark' states. Here we employ ultrafast mid-infrared spectroscopy to explore the 1s intraexcitonic transitions in monolayer MoS2. We observed twofold 1s→3p intraexcitonic transitions within the A and B excitons and 1s→2p transition between the A and B excitons. Our results revealed that it takes about 0.7 ps for the 1s A exciton to reach quasi-equilibrium; a characteristic time that is associated with a rapid population transfer from the 1s B exciton, providing rich characteristics of many-body exciton dynamics in two-dimensional materials.

12.
Nat Commun ; 6: 7372, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26099952

RESUMO

Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system.

13.
Adv Mater ; 27(25): 3803-10, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26011695

RESUMO

2D vertical stacking and lateral stitching growth of monolayer (ML) hexagonal transition-metal dichalcogenides are reported. The 2D heteroepitaxial manipulation of MoS2 and WS2 MLs is achieved by control of the 2D nucleation kinetics during the sequential vapor-phase growth. It enables the creation of hexagon-on-hexagon unit-cell stacking and hexagon-by-hexagon stitching without interlayer rotation misfits.

14.
Nano Lett ; 15(6): 3703-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25933199

RESUMO

van der Waals layered materials have large crystal anisotropy and crystallize spontaneously into two-dimensional (2D) morphologies. Two-dimensional materials with hexagonal lattices are emerging 2D confined electronic systems at the limit of one or three atom thickness. Often these 2D lattices also form orthorhombic symmetries, but these materials have not been extensively investigated, mainly due to thermodynamic instability during crystal growth. Here, we show controlled polymorphic growth of 2D tin-sulfide crystals of either hexagonal SnS2 or orthorhombic SnS. Addition of H2 during the growth reaction enables selective determination of either n-type SnS2 or p-type SnS 2D crystal of dissimilar energy band gap of 2.77 eV (SnS2) or 1.26 eV (SnS) as a final product. Based on this synthetic 2D polymorphism of p-n crystals, we also demonstrate p-n heterojunctions for rectifiers and photovoltaic cells, and complementary inverters.

15.
Nano Lett ; 14(7): 4030-5, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24937706

RESUMO

Material design for direct heat-to-electricity conversion with substantial efficiency essentially requires cooperative control of electrical and thermal transport. Bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3), displaying the highest thermoelectric power at room temperature, are also known as topological insulators (TIs) whose electronic structures are modified by electronic confinements and strong spin-orbit interaction in a-few-monolayers thickness regime, thus possibly providing another degree of freedom for electron and phonon transport at surfaces. Here, we explore novel thermoelectric conversion in the atomic monolayer steps of a-few-layer topological insulating Bi2Te3 (n-type) and Sb2Te3 (p-type). Specifically, by scanning photoinduced thermoelectric current imaging at the monolayer steps, we show that efficient thermoelectric conversion is accomplished by optothermal motion of hot electrons (Bi2Te3) and holes (Sb2Te3) through 2D subbands and topologically protected surface states in a geometrically deterministic manner. Our discovery suggests that the thermoelectric conversion can be interiorly achieved at the atomic steps of a homogeneous medium by direct exploiting of quantum nature of TIs, thus providing a new design rule for the compact thermoelectric circuitry at the ultimate size limit.

16.
Nanotechnology ; 25(1): 014010, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24334567

RESUMO

One-dimensional (1D) heteroepitaxy with an abrupt interface is essential to construct the 1D heterojunctions required for photonic and electronic devices. During catalytic 1D heteroepitaxial growth, however, the heterojunctions are generically kinked and composition-diffused across the interfaces. Here, we report a simple synthetic route for straight 1D heteroepitaxy with atomically sharp interfaces of group IV(Ge)/group II-VI(ZnSe) nanowires (NWs) during Au-catalytic growth. Specifically, it is discovered that eliminating residues in Au catalysts by Se vapour treatments lowers the energy barrier for the Ge NW axial heteroepitaxy on ZnSe NWs, and forms atomically abrupt heterointerfaces. We verified such 1D variation in the local electronic band structure of the grown Ge/ZnSe NW heterojunctions with spatially resolved photocurrent measurements.

17.
Nano Lett ; 12(2): 855-60, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22268369

RESUMO

Planar defects in compound (III-V and II-VI) semiconductor nanowires (NWs), such as twin and stacking faults, are universally formed during the catalytic NW growth, and they detrimentally act as static disorders against coherent electron transport and light emissions. Here we report a simple synthetic route for planar-defect free II-VI NWs by tunable alloying, i.e. Cd(1-x)Zn(x)Te NWs (0 ≤ x ≤ 1). It is discovered that the eutectic alloying of Cd and Zn in Au catalysts immediately alleviates interfacial instability during the catalytic growth by the surface energy minimization and forms homogeneous zinc blende crystals as opposed to unwanted zinc blende/wurtzite mixtures. As a direct consequence of the tunable alloying, we demonstrated that intrinsic energy band gap modulation in Cd(1-x)Zn(x)Te NWs can exploit the tunable spectral and temporal responses in light detection and emission in the full visible range.


Assuntos
Ligas/química , Cádmio/química , Ouro/química , Nanofios/química , Telúrio/química , Zinco/química , Catálise , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...