Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418578

RESUMO

The ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling and electrophysiological recordings indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the function of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, upon expression in neurons of dissociated or organotypic slice cultures, we found that both GluD1 mutants hampered metabotropic glutamate receptor mGlu1/5 signaling via Ca2+ and the ERK pathway and impaired dendrite morphology and excitatory synapse density. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system.

2.
FEBS J ; 290(15): 3745-3747, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37345272

RESUMO

GluD1 and GluD2 subunits (also known as delta 1 and 2) are the members of the delta family of ionotropic glutamate receptors. They are particularly puzzling, since they are unable to bind glutamate, but rather bind glycine and d-serine via their classical ligand binding domain (LBD). While GluD2 has been the subject of intensive research over the past decades, it is only recently that GluD1 received similar interest and very few studies compare the properties of these two membrane proteins. In their research article included in this issue, Masternak et al. resolved the 3D structure of the GluD1 LBD, compared its d-serine sensitivity with that of GluD2 and identified critical residues involved in the dynamics of the LBD.


Assuntos
Ácido Glutâmico , Receptores de Glutamato , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Ligantes , Domínios Proteicos , Serina/metabolismo
3.
Elife ; 102021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34766906

RESUMO

Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (KATP) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types. We also demonstrate the ability of cortical neurons to take-up and metabolize lactate. We further reveal that ATP is produced by cortical neurons largely via oxidative phosphorylation and only modestly by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to glucose as an energy substrate, and that lactate metabolism shapes neuronal activity in the neocortex through KATP channels. Our results highlight the importance of metabolic crosstalk between neurons and astrocytes for brain function.


Assuntos
Ácido Láctico/metabolismo , Neurônios/metabolismo , Trifosfato de Adenosina , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Glicólise , Canais KATP , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Fosforilação Oxidativa , Ratos Wistar
4.
iScience ; 23(11): 101710, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33196030

RESUMO

Little is known about the real-time cellular dynamics triggered by endogenous catecholamine release despite their importance in brain functions. To address this issue, we expressed channelrhodopsin in locus coeruleus neurons and protein kinase-A activity biosensors in cortical pyramidal neurons and combined two-photon imaging of biosensors with photostimulation of locus coeruleus cortical axons, in acute slices and in vivo. Burst photostimulation of axons for 5-10 s elicited robust, minutes-lasting kinase-A activation in individual neurons, indicating that a single burst firing episode of synchronized locus coeruleus neurons has rapid and lasting effects on cortical network. Responses were mediated by ß1 adrenoceptors, dampened by co-activation of α2 adrenoceptors, and dramatically increased upon inhibition of noradrenaline reuptake transporter. Dopamine receptors were not involved, showing that kinase-A activation was due to noradrenaline release. Our study shows that noradrenergic transmission can be characterized with high spatiotemporal resolution in brain slices and in vivo using optogenetic tools.

5.
Neuroimage ; 220: 117069, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32585347

RESUMO

Astrocytes are a major type of glial cell in the mammalian brain, essentially regulating neuronal development and function. Quantitative imaging represents an important approach to study astrocytic signaling in neural circuits. Focusing on astrocytic Ca2+ activity, a key pathway implicated in astrocye-neuron interaction, we here report a strategy combining fast light sheet fluorescence microscopy (LSFM) and correlative screening-based time series analysis, to map activity domains in astrocytes in living mammalian nerve tissue. Light sheet of micron-scale thickness enables wide-field optical sectioning to image astrocytes in acute mouse brain slices. Using both chemical and genetically encoded Ca2+ indicators, we demonstrate the complementary advantages of LSFM in mapping Ca2+ domains in astrocyte populations as compared to epifluorescence and two-photon microscopy. Our approach then revealed distinct kinetics of Ca2+ signals between cortical and hypothalamic astrocytes in resting conditions and following the activation of adrenergic G protein coupled receptor (GPCR). This observation highlights the activity heterogeneity across regionally distinct astrocyte populations, and indicates the potential of our method for investigating dynamic signals in astrocytes.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Animais , Camundongos , Microscopia de Fluorescência , Neurônios/fisiologia
6.
Proc Natl Acad Sci U S A ; 116(11): 5170-5175, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804201

RESUMO

The transient receptor potential vanilloid-1 (TRPV1) ion channel is essential for sensation of thermal and chemical pain. TRPV1 activation is accompanied by Ca2+-dependent desensitization; acute desensitization reflects rapid reduction in channel activity during stimulation, whereas tachyphylaxis denotes the diminution in TRPV1 responses to repetitive stimulation. Acute desensitization has been attributed to conformational changes of the TRPV1 channel; however, the mechanisms underlying the establishment of tachyphylaxis remain to be defined. Here, we report that the degree of whole-cell TRPV1 tachyphylaxis is regulated by the strength of inducing stimulation. Using light-sheet microscopy and pH-sensitive sensor pHluorin to follow TRPV1 endocytosis and exocytosis trafficking, we provide real-time information that tachyphylaxis of different degrees concurs with TRPV1 recycling to the plasma membrane in a proportional manner. This process controls TRPV1 surface expression level thereby the whole-cell nociceptive response. We further show that activity-gated TRPV1 trafficking associates with intracellular Ca2+ signals of distinct kinetics, and recruits recycling routes mediated by synaptotagmin 1 and 7, respectively. These results suggest that activity-dependent TRPV1 recycling contributes to the establishment of tachyphylaxis.


Assuntos
Membrana Celular/metabolismo , Endocitose , Canais de Cátion TRPV/metabolismo , Taquifilaxia , Animais , Sinalização do Cálcio , Exocitose , Células HEK293 , Humanos , Luz , Transporte Proteico , Ratos , Sinaptotagminas/metabolismo
8.
Front Cell Neurosci ; 12: 216, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072874

RESUMO

The impairment of cerebral glucose utilization is an early and predictive biomarker of Alzheimer's disease (AD) that is likely to contribute to memory and cognition disorders during the progression of the pathology. Yet, the cellular and molecular mechanisms underlying these metabolic alterations remain poorly understood. Here we studied the glucose metabolism of supragranular pyramidal cells at an early presymptomatic developmental stage in non-transgenic (non-Tg) and 3xTg-AD mice, a mouse model of AD replicating numerous hallmarks of the disease. We performed both intracellular glucose imaging with a genetically encoded fluorescence resonance energy transfer (FRET)-based glucose biosensor and transcriptomic profiling of key molecular elements of glucose metabolism with single-cell multiplex RT-PCR (scRT-mPCR). We found that juvenile pyramidal cells exhibit active glycolysis and pentose phosphate pathway at rest that are respectively enhanced and impaired in 3xTg-AD mice without alteration of neuronal glucose uptake or transcriptional modification. Given the importance of glucose metabolism for neuronal survival, these early alterations could initiate or at least contribute to the later neuronal dysfunction of pyramidal cells in AD.

10.
Brain Struct Funct ; 220(5): 2797-815, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25001082

RESUMO

Recent reports point to critical roles of glutamate receptor subunit delta2 (GluD2) at excitatory synapses and link GluD1 gene alteration to schizophrenia but the expression patterns of these subunits in the brain remain almost uncharacterized. We examined the distribution of GluD1-2 mRNAs and proteins in the adult rodent brain, focusing mainly on GluD1. In situ hybridization revealed widespread neuronal expression of the GluD1 mRNA, with higher levels occurring in several forebrain regions and lower levels in cerebellum. Quantitative RT-PCR assessed differential GluD1 expression in cortex and cerebellum, and revealed GluD2 expression in cortex, albeit at markedly lower level than in cerebellum. Likewise, a high GluD1/GluD2 mRNA ratio was observed in cortex and a low ratio in cerebellum. GluD1 and GluD2 mRNAs were co-expressed in single cortical and hippocampal neurons, with a large predominance of GluD1. Western blots using GluD1- and GluD2-specific antibodies showed expression of both subunits in various brain structures, but not in non-nervous tissues examined. Both delta subunits were upregulated during postnatal development. Widespread neuronal expression of the GluD1 protein was confirmed using immunohistochemistry. Examination at the electron microscopic level in the hippocampus revealed that GluD1 was mainly localized at postsynaptic density of excitatory synapses on pyramidal cells. Control experiments performed using mice carrying deletion of the GluD1- or the GluD2-encoding gene confirmed the specificity of the present mRNA and protein analyses. Our results support a role for the delta family of glutamate receptors at excitatory synapses in neuronal networks throughout the adult brain.


Assuntos
Envelhecimento/fisiologia , Cerebelo/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Glutamato/metabolismo , Sinapses/metabolismo , Animais , Expressão Gênica/fisiologia , Camundongos
11.
Neuron ; 84(1): 123-136, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25242222

RESUMO

One feature of neuropathic pain is a reduced GABAergic inhibitory function. Nociceptors have been suggested to play a key role in this process. However, the mechanisms behind nociceptor-mediated modulation of GABA signaling remain to be elucidated. Here we describe the identification of GINIP, a Gαi-interacting protein expressed in two distinct subsets of nonpeptidergic nociceptors. GINIP null mice develop a selective and prolonged mechanical hypersensitivity in models of inflammation and neuropathy. GINIP null mice show impaired responsiveness to GABAB, but not to delta or mu opioid receptor agonist-mediated analgesia specifically in the spared nerve injury (SNI) model. Consistently, GINIP-deficient dorsal root ganglia neurons had lower baclofen-evoked inhibition of high-voltage-activated calcium channels and a defective presynaptic inhibition of lamina IIi interneurons. These results further support the role of unmyelinated C fibers in injury-induced modulation of spinal GABAergic inhibition and identify GINIP as a key modulator of peripherally evoked GABAB-receptors signaling.


Assuntos
Analgesia/métodos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Receptores de GABA-B/fisiologia , Sequência de Aminoácidos , Animais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos
12.
Front Cell Neurosci ; 8: 247, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25191229

RESUMO

Noradrenergic fibers innervate the entire cerebral cortex, whereas the cortical distribution of dopaminergic fibers is more restricted. However, the relative functional impact of noradrenalin and dopamine receptors in various cortical regions is largely unknown. Using a specific genetic label, we first confirmed that noradrenergic fibers innervate the entire cortex whereas dopaminergic fibers were present in all layers of restricted medial and lateral areas but only in deep layers of other areas. Imaging of a genetically encoded sensor revealed that noradrenalin and dopamine widely activate PKA in cortical pyramidal neurons of frontal, parietal and occipital regions with scarce dopaminergic fibers. Responses to noradrenalin had higher amplitude, velocity and occurred at more than 10-fold lower dose than those elicited by dopamine, whose amplitude and velocity increased along the antero-posterior axis. The pharmacology of these responses was consistent with the involvement of Gs-coupled beta1 adrenergic and D1/D5 dopaminergic receptors, but the inhibition of both noradrenalin and dopamine responses by beta adrenergic antagonists was suggestive of the existence of beta1-D1/D5 heteromeric receptors. Responses also involved Gi-coupled alpha2 adrenergic and D2-like dopaminergic receptors that markedly reduced their amplitude and velocity and contributed to their cell-to-cell heterogeneity. Our results reveal that noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex with moderate regional and laminar differences. These receptors can thus mediate widespread effects of both catecholamines, which are reportedly co-released by cortical noradrenergic fibers beyond the territory of dopaminergic fibers.

13.
FASEB J ; 28(3): 1375-85, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24334549

RESUMO

The ß-strands of GFP form a rigid barrel that protects the chromophore from external influence. Herein, we identified specific mutations in ß-strand 7 that render the chromophore sensitive to interactions of GFP with another protein domain. In the process of converting the FRET-based protein kinase A (PKA) sensor AKAR2 into a single-wavelength PKA sensor containing a GFP and a quencher, we discovered that the quencher was not required and that the sensor response relied on changes in GFP intrinsic fluorescence. The identified mutations in ß-strand 7 render GFP fluorescence intensity and lifetime sensitive to conformational changes of the PKA-sensing domain. In addition, sensors engineered from the GCaMP2 calcium indicator to incorporate a conformation-sensitive GFP (csGFP) exhibited calcium-dependent fluorescence changes. We further demonstrate that single GFP sensors report PKA dynamics in dendritic spines of neurons from brain slices on 2-photon imaging with a high signal-to-baseline ratio and minimal photobleaching. The susceptibility of GFP variants to dynamic interactions with other protein domains provides a new approach to generate single wavelength biosensors for high-resolution imaging.


Assuntos
Técnicas Biossensoriais , Proteínas de Fluorescência Verde/genética , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/química
14.
Cereb Cortex ; 21(3): 708-18, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20699230

RESUMO

The functional significance of diverse neuropeptide coexpression and convergence onto common second messenger pathways remains unclear. To address this question, we characterized responses to corticotropin-releasing factor (CRF), pituitary adenylate cyclase-activating peptide (PACAP), and vasoactive intestinal peptide (VIP) in rat neocortical slices using optical recordings of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) sensors, patch-clamp, and single-cell reverse transcription-polymerase chain reaction. Responses of pyramidal neurons to the 3 neuropeptides markedly differed in time-course and amplitude. Effects of these neuropeptides on the PKA-sensitive slow afterhyperpolarization current were consistent with those observed with cAMP/PKA sensors. CRF-1 receptors, primarily expressed in pyramidal cells, reportedly mediate the neocortical effects of CRF. PACAP and VIP activated distinct PAC1 and VPAC1 receptors, respectively. Indeed, a selective VPAC1 antagonist prevented VIP responses but had a minor effect on PACAP responses, which were mimicked by a specific PAC1 agonist. While PAC1 and VPAC1 were coexpressed in pyramidal cells, PAC1 expression was also frequently detected in interneurons, suggesting that PACAP has widespread effects on the neuronal network. Our results suggest that VIP and CRF, originating from interneurons, and PACAP, expressed mainly by pyramidal cells, finely tune the excitability and gene expression in the neocortical network via distinct cAMP/PKA-mediated effects.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Hibridização In Situ , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
15.
Proc Natl Acad Sci U S A ; 105(34): 12575-80, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18715999

RESUMO

Metabotropic glutamate receptors (mGluRs) 1-8 are G protein-coupled receptors (GPCRs) that modulate excitatory neurotransmission, neurotransmitter release, and synaptic plasticity. PKC regulates many aspects of mGluR function, including protein-protein interactions, Ca(2+) signaling, and receptor desensitization. However, the mechanisms by which PKC regulates mGluR function are poorly understood. We have now identified calmodulin (CaM) as a dynamic regulator of mGluR5 trafficking. We show that the major PKC phosphorylation site on the intracellular C terminus of mGluR5 is serine 901 (S901), and phosphorylation of this residue is up-regulated in response to both receptor and PKC activation. In addition, S901 phosphorylation inhibits mGluR5 binding to CaM, decreasing mGluR5 surface expression. Furthermore, blocking PKC phosphorylation of mGluR5 on S901 dramatically affects mGluR5 signaling by prolonging Ca(2+) oscillations. Thus, our data demonstrate that mGluR5 activation triggers phosphorylation of S901, thereby directly linking PKC phosphorylation, CaM binding, receptor trafficking, and downstream signaling.


Assuntos
Calmodulina/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Hipocampo/citologia , Fosforilação , Ligação Proteica , Proteína Quinase C/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Transdução de Sinais , Transfecção
16.
J Neurosci ; 27(11): 2744-50, 2007 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-17360896

RESUMO

The cAMP-dependent protein kinase A (PKA) plays a ubiquitous role in the regulation of neuronal activity, but the dynamics of its activation have been difficult to investigate. We used the genetically encoded fluorescent probe AKAR2 to record PKA activation in the cytosol and the nucleus of neurons in mouse brain slice preparations, whereas the potassium current underlying the slow afterhyperpolarization potential (sAHP) in thalamic intralaminar neurons was used to monitor PKA activation at the membrane. Adenylyl cyclase was stimulated either directly using forskolin or via activation of 5-HT7 receptors. Both stimulations produced a maximal effect on sAHP, whereas in the cytosol, the amplitude of the 5-HT7 receptor-mediated response was half of that after direct adenylyl cyclase stimulation with forskolin. 5-HT7-mediated PKA responses were obtained in 30 s at the membrane, in 2.5 min in the cytosol, and in 13 min in the nucleus. Our results show in morphologically intact mammalian neurons the potential physiological relevance of PKA signal integration at the subcellular level: neuromodulators produce fast and powerful effects on membrane excitability, consistent with a highly efficient functional coupling between adenylyl cyclases, PKA, and target channels. Phosphorylation in the cytosol is slower and of graded amplitude, showing a differential integration of the PKA signal between the membrane and the cytosol. The nucleus integrates these cytosolic signals over periods of tens of minutes, consistent with passive diffusion of the free catalytic subunit of PKA into the nucleus, eventually resulting in a graded modulation of gene expression.


Assuntos
Encéfalo/enzimologia , Núcleo Celular/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Citosol/enzimologia , Proteínas de Membrana/fisiologia , Neurônios/enzimologia , Animais , Membrana Celular/enzimologia , Células Cultivadas , Cricetinae , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
17.
J Biol Chem ; 280(8): 6610-20, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15611044

RESUMO

Regulated exocytosis is a process in which a physiological trigger initiates the translocation, docking, and fusion of secretory granules with the plasma membrane. A class of proteins termed SNAREs (including SNAP-23, syntaxins, and VAMPs) are known regulators of secretory granule/plasma membrane fusion events. We have investigated the molecular mechanisms of regulated exocytosis in mast cells and find that SNAP-23 is phosphorylated when rat basophilic leukemia mast cells are triggered to degranulate. The kinetics of SNAP-23 phosphorylation mirror the kinetics of exocytosis. We have identified amino acid residues Ser(95) and Ser(120) as the major phosphorylation sites in SNAP-23 in rodent mast cells. Quantitative analysis revealed that approximately 10% of SNAP-23 was phosphorylated when mast cell degranulation was induced. These same residues were phosphorylated when mouse platelet degranulation was induced with thrombin, demonstrating that phosphorylation of SNAP-23 Ser(95) and Ser(120) is not restricted to mast cells. Although triggering exocytosis did not alter the absolute amount of SNAP-23 bound to SNAREs, after stimulation essentially all of the SNAP-23 bound to the plasma membrane SNARE syntaxin 4 and the vesicle SNARE VAMP-2 was phosphorylated. Regulated exocytosis studies revealed that overexpression of SNAP-23 phosphorylation mutants inhibited exocytosis from rat basophilic leukemia mast cells, demonstrating that phosphorylation of SNAP-23 on Ser(120) and Ser(95) modulates regulated exocytosis by mast cells.


Assuntos
Exocitose , Mastócitos/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Animais , Sítios de Ligação , Plaquetas/metabolismo , Linhagem Celular , Proteínas de Membrana/metabolismo , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratos , Proteínas SNARE , Serina/metabolismo , Transfecção , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
18.
FEBS Lett ; 532(1-2): 52-6, 2002 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-12459461

RESUMO

SNAP-25 is a key protein required for the fusion of synaptic vesicles with the plasma membrane during exocytosis. This study establishes that SNAP-25 is differentially phosphorylated by protein kinase C and protein kinase A in neuroendocrine PC12 cells. Using phosphopeptide mapping and site-directed mutagenesis we identified both Thr138 and Ser187 as the targets of SNAP-25 phosphorylation by protein kinase C and Thr138 as the exclusive site of SNAP-25 phosphorylation by protein kinase A in vivo. Finally, despite published data to the contrary, we demonstrate that stimulation of regulated exocytosis under physiological conditions is independent of a measurable increase in SNAP-25 phosphorylation in PC12 cells.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Quinase C/metabolismo , Animais , Células HeLa , Humanos , Cinética , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Norepinefrina/metabolismo , Células PC12 , Fosforilação , Ratos , Serina/metabolismo , Proteína 25 Associada a Sinaptossoma , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...