Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38371317

RESUMO

Steinernema entomopathogenic nematodes form specific, obligate symbiotic associations with gram-negative, gammaproteobacteria members of the Xenorhabdus genus. Together, the nematodes and symbiotic bacteria infect and kill insects, utilize the nutrient-rich cadaver for reproduction, and then reassociate, the bacteria colonizing the nematodes' anterior intestines before the nematodes leave the cadaver to search for new prey. In addition to their use in biocontrol of insect pests, these nematode-bacteria pairs are highly tractable experimental laboratory models for animal-microbe symbiosis and parasitism research. One advantageous feature of entomopathogenic nematode model systems is that the nematodes are optically transparent, which facilitates direct observation of nematode-associated bacteria throughout the lifecycle. In this work, green- and red-fluorescently labeled X. griffiniae HGB2511 bacteria were created and associated with their S . hermaphroditum symbiotic nematode partners and observed using fluorescence microscopy. As expected, the fluorescent bacteria were visible as a colonizing cluster in the lumen of the anterior intestinal caecum of the infective stage of the nematode. These tools allow detailed observations of X. griffiniae localization and interactions with its nematode and insect host tissues throughout their lifecycles.

2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37179970

RESUMO

Symbiosis, the beneficial interactions between two organisms, is a ubiquitous feature of all life on Earth, including associations between animals and bacteria. However, the specific molecular and cellular mechanisms which underlie the diverse partnerships formed between animals and bacteria are still being explored. Entomopathogenic nematodes transport bacteria between insect hosts, together they kill the insect, and the bacteria consume the insect and serve as food source for the nematodes. These nematodes, including those in the Steinernema genus, are effective laboratory models for studying the molecular mechanisms of symbiosis because of the natural partnership they form with Xenorhabdus bacteria and their straightforward husbandry. Steinernema hermaphroditum nematodes and their Xenorhabdus griffiniae symbiotic bacteria are being developed as a genetic model pair for studying symbiosis. Our goal in this project was to begin to identify bacterial genes that may be important for symbiotic interactions with the nematode host. Towards this end, we adapted and optimized a protocol for delivery and insertion of a lacZ- promoter-probe transposon for use in the S. hermaphroditum symbiont, X. griffiniae HGB2511 (Cao et al., 2022). We assessed the frequencies at which we obtained exconjugants, metabolic auxotrophic mutants, and active promoter- lacZ fusions. Our data indicate that the Tn 10 transposon inserted relatively randomly based on the finding that 4.7% of the mutants exhibited an auxotrophic phenotype. Promoter-fusions with the transposon-encoded lacZ , which resulted in expression of ß-galactosidase activity, occurred in 47% of the strains. To our knowledge, this is the first mutagenesis protocol generated for this bacterial species, and will facilitate the implementation of large scale screens for symbiosis and other phenotypes of interest in X. griffiniae .

3.
Genetics ; 222(4)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36218393

RESUMO

Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.


Assuntos
Fator 4 Nuclear de Hepatócito , Mucosa Intestinal , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/fisiologia , Mucosa Intestinal/embriologia , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Intestinos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
4.
Nat Rev Gastroenterol Hepatol ; 18(1): 7-23, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33024279

RESUMO

The intestinal epithelium serves the unique and critical function of harvesting dietary nutrients, while simultaneously acting as a cellular barrier separating tissues from the luminal environment and gut microbial ecosystem. Two salient features of the intestinal epithelium enable it to perform these complex functions. First, cells within the intestinal epithelium achieve a wide range of specialized identities, including different cell types and distinct anterior-posterior patterning along the intestine. Second, intestinal epithelial cells are sensitive and responsive to the dynamic milieu of dietary nutrients, xenobiotics and microorganisms encountered in the intestinal luminal environment. These diverse identities and responsiveness of intestinal epithelial cells are achieved in part through the differential transcription of genes encoded in their shared genome. Here, we review insights from mice and other vertebrate models into the transcriptional regulatory mechanisms underlying intestinal epithelial identity and microbial responsiveness, including DNA methylation, chromatin accessibility, histone modifications and transcription factors. These studies are revealing that most transcription factors involved in intestinal epithelial identity also respond to changes in the microbiota, raising both opportunities and challenges to discern the underlying integrative transcriptional regulatory networks.


Assuntos
Diferenciação Celular/genética , Microambiente Celular/fisiologia , Microbioma Gastrointestinal , Mucosa Intestinal/fisiologia , Animais , Diferenciação Celular/fisiologia , Microambiente Celular/genética , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Regulação da Expressão Gênica , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Intestinos/fisiologia , Camundongos , Modelos Animais , Nutrigenômica , Fenômenos Fisiológicos da Nutrição/genética , Fenômenos Fisiológicos da Nutrição/fisiologia , Transcrição Gênica/genética , Transcrição Gênica/fisiologia , Peixe-Zebra
5.
J Cell Biol ; 217(5): 1869-1882, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29490939

RESUMO

Fluorescence microscopy is a powerful approach for studying subcellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light-sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective by using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel live-cell LSFM method, lateral interference tilted excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, and coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution.


Assuntos
Luz , Microscopia de Fluorescência/métodos , Fotodegradação , Animais , Arabidopsis/citologia , Linhagem Celular , Núcleo Celular/metabolismo , Fluorescência , Fungos/citologia , Humanos , Imageamento Tridimensional , Modelos Biológicos , Reprodutibilidade dos Testes , Imagem com Lapso de Tempo
6.
Genetics ; 208(3): 1147-1164, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29348144

RESUMO

Oriented cell divisions are critical to establish and maintain cell fates and tissue organization. Diverse extracellular and intracellular cues have been shown to provide spatial information for mitotic spindle positioning; however, the molecular mechanisms by which extracellular signals communicate with cells to direct mitotic spindle positioning are largely unknown. In animal cells, oriented cell divisions are often achieved by the localization of force-generating motor protein complexes to discrete cortical domains. Disrupting either these force-generating complexes or proteins that globally affect microtubule stability results in defects in mitotic positioning, irrespective of whether these proteins function as spatial cues for spindle orientation. This poses a challenge to traditional genetic dissection of this process. Therefore, as an alternative strategy to identify key proteins that act downstream of intercellular signaling, we screened the localization of many candidate proteins by inserting fluorescent tags directly into endogenous gene loci, without overexpressing the proteins. We tagged 23 candidate proteins in Caenorhabditis elegans and examined each protein's localization in a well-characterized, oriented cell division in the four-cell-stage embryo. We used cell manipulations and genetic experiments to determine which cells harbor key localized proteins and which signals direct these localizations in vivo We found that Dishevelled and adenomatous polyposis coli homologs are polarized during this oriented cell division in response to a Wnt signal, but two proteins typically associated with mitotic spindle positioning, homologs of NuMA and Dynein, were not detectably polarized. These results suggest an unexpected mechanism for mitotic spindle positioning in this system, they pinpoint key proteins of interest, and they highlight the utility of a screening approach based on analyzing the localization of endogenously tagged proteins.


Assuntos
Divisão Celular Assimétrica/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Wnt/metabolismo , Animais , Biomarcadores , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transporte Proteico , Transdução de Sinais , Fuso Acromático/metabolismo , Células-Tronco/metabolismo
7.
Nat Cell Biol ; 18(12): 1267-1268, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27897161

RESUMO

Work from the early 1980s reported strange lobes protruding from Caenorhabditis elegans germ cell precursors. However, the fate and potential significance of these lobes remained unexplored for decades. Now, neighbouring endodermal cells are shown to sever and digest these lobes, in an unexpected process of 'intercellular cannibalism', which could play an important part in regulating primordial germ cells.


Assuntos
Espaço Extracelular/metabolismo , Células Germinativas/citologia , Animais , Caenorhabditis elegans/citologia , Modelos Biológicos
8.
Mol Biol Cell ; 27(22): 3385-3394, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27385332

RESUMO

Fluorescent protein tags are fundamental tools used to visualize gene products and analyze their dynamics in vivo. Recent advances in genome editing have expedited the precise insertion of fluorescent protein tags into the genomes of diverse organisms. These advances expand the potential of in vivo imaging experiments and facilitate experimentation with new, bright, photostable fluorescent proteins. Most quantitative comparisons of the brightness and photostability of different fluorescent proteins have been made in vitro, removed from biological variables that govern their performance in cells or organisms. To address the gap, we quantitatively assessed fluorescent protein properties in vivo in an animal model system. We generated transgenic Caenorhabditis elegans strains expressing green, yellow, or red fluorescent proteins in embryos and imaged embryos expressing different fluorescent proteins under the same conditions for direct comparison. We found that mNeonGreen was not as bright in vivo as predicted based on in vitro data but is a better tag than GFP for specific kinds of experiments, and we report on optimal red fluorescent proteins. These results identify ideal fluorescent proteins for imaging in vivo in C. elegans embryos and suggest good candidate fluorescent proteins to test in other animal model systems for in vivo imaging experiments.


Assuntos
Imagem Óptica/métodos , Animais , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Proteína Vermelha Fluorescente
9.
Genetics ; 202(1): 123-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26434722

RESUMO

Neural tube defects including spina bifida are common and severe congenital disorders. In mice, mutations in more than 200 genes can result in neural tube defects. We hypothesized that this large gene set might include genes whose homologs contribute to morphogenesis in diverse animals. To test this hypothesis, we screened a set of Caenorhabditis elegans homologs for roles in gastrulation, a topologically similar process to vertebrate neural tube closure. Both C. elegans gastrulation and vertebrate neural tube closure involve the internalization of surface cells, requiring tissue-specific gene regulation, actomyosin-driven apical constriction, and establishment and maintenance of adhesions between specific cells. Our screen identified several neural tube defect gene homologs that are required for gastrulation in C. elegans, including the transcription factor sptf-3. Disruption of sptf-3 in C. elegans reduced the expression of early endodermally expressed genes as well as genes expressed in other early cell lineages, establishing sptf-3 as a key contributor to multiple well-studied C. elegans cell fate specification pathways. We also identified members of the actin regulatory WAVE complex (wve-1, gex-2, gex-3, abi-1, and nuo-3a). Disruption of WAVE complex members reduced the narrowing of endodermal cells' apical surfaces. Although WAVE complex members are expressed broadly in C. elegans, we found that expression of a vertebrate WAVE complex member, nckap1, is enriched in the developing neural tube of Xenopus. We show that nckap1 contributes to neural tube closure in Xenopus. This work identifies in vivo roles for homologs of mammalian neural tube defect genes in two manipulable genetic model systems.


Assuntos
Caenorhabditis elegans/genética , Morfogênese/genética , Tubo Neural/embriologia , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular , Membrana Celular , Desenvolvimento Embrionário/genética , Endoderma/metabolismo , Gastrulação/genética , Genes de Helmintos , Humanos , Interferência de RNA , RNA de Helmintos , Análise de Sequência de RNA , Fatores de Transcrição/genética , Vertebrados/embriologia , Vertebrados/genética , Xenopus laevis
10.
Genetics ; 200(4): 1035-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26044593

RESUMO

A central goal in the development of genome engineering technology is to reduce the time and labor required to produce custom genome modifications. Here we describe a new selection strategy for producing fluorescent protein (FP) knock-ins using CRISPR/Cas9-triggered homologous recombination. We have tested our approach in Caenorhabditis elegans. This approach has been designed to minimize hands-on labor at each step of the procedure. Central to our strategy is a newly developed self-excising cassette (SEC) for drug selection. SEC consists of three parts: a drug-resistance gene, a visible phenotypic marker, and an inducible Cre recombinase. SEC is flanked by LoxP sites and placed within a synthetic intron of a fluorescent protein tag, resulting in an FP-SEC module that can be inserted into any C. elegans gene. Upon heat shock, SEC excises itself from the genome, leaving no exogenous sequences outside the fluorescent protein tag. With our approach, one can generate knock-in alleles in any genetic background, with no PCR screening required and without the need for a second injection step to remove the selectable marker. Moreover, this strategy makes it possible to produce a fluorescent protein fusion, a transcriptional reporter and a strong loss-of-function allele for any gene of interest in a single injection step.


Assuntos
Genômica , Sequências Repetitivas Dispersas/genética , Mutagênese Insercional/métodos , Alelos , Animais , Caenorhabditis elegans/genética , Fusão Gênica , Técnicas de Introdução de Genes , Loci Gênicos/genética , Proteínas Luminescentes/genética , Regiões Promotoras Genéticas/genética , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...