Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 239(2): 687-704, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149885

RESUMO

Priming is an adaptive mechanism that fortifies plant defense by enhancing activation of induced defense responses following pathogen challenge. Microorganisms have signature microbe-associated molecular patterns (MAMPs) that induce the primed state. The lipopolysaccharide (LPS) MAMP isolated from the xylem-limited pathogenic bacterium, Xylella fastidiosa, acts as a priming stimulus in Vitis vinifera grapevines. Grapevines primed with LPS developed significantly less internal tyloses and external disease symptoms than naive vines. Differential gene expression analysis indicated major transcriptomic reprogramming during the priming and postpathogen challenge phases. Furthermore, the number of differentially expressed genes increased temporally and spatially in primed vines, but not in naive vines during the postpathogen challenge phase. Using a weighted gene co-expression analysis, we determined that primed vines have more genes that are co-expressed in both local and systemic petioles than naive vines indicating an inherent synchronicity that underlies the systemic response to this vascular pathogen specific to primed plants. We identified a cationic peroxidase, VviCP1, that was upregulated during the priming and postpathogen challenge phases in an LPS-dependent manner. Transgenic expression of VviCP1 conferred significant disease resistance, thus, demonstrating that grapevine is a robust model for mining and expressing genes linked to defense priming and disease resistance.


Assuntos
Resistência à Doença , Lipopolissacarídeos , Doenças das Plantas , Vitis , Resistência à Doença/genética , Lipopolissacarídeos/farmacologia , Peroxidase , Doenças das Plantas/microbiologia , Vitis/genética , Xilema
2.
Mol Plant Microbe Interact ; 36(10): 636-646, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37188464

RESUMO

Xylella fastidiosa is a xylem-limited bacterial pathogen that causes Pierce's disease (PD) of grapevine. In host plants, this bacterium exclusively colonizes the xylem, which is primarily non-living at maturity. Understanding how X. fastidiosa interfaces with this specialized conductive tissue is at the forefront of investigation for this pathosystem. Unlike many bacterial plant pathogens, X. fastidiosa lacks a type III secretion system and cognate effectors that aid in host colonization. Instead, X. fastidiosa utilizes plant cell-wall hydrolytic enzymes and lipases as part of its xylem colonization strategy. Several of these virulence factors are predicted to be secreted via the type II secretion system (T2SS), the main terminal branch of the Sec-dependent general secretory pathway. In this study, we constructed null mutants in xpsE and xpsG, which encode for the ATPase that drives the T2SS and the major structural pseudopilin of the T2SS, respectively. Both mutants were non-pathogenic and unable to effectively colonize Vitis vinifera grapevines, demonstrating that the T2SS is required for X. fastidiosa infection processes. Furthermore, we utilized mass spectrometry to identify type II-dependent proteins in the X. fastidiosa secretome. In vitro, we identified six type II-dependent proteins in the secretome that included three lipases, a ß-1,4-cellobiohydrolase, a protease, and a conserved hypothetical protein. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Sistemas de Secreção Tipo II , Vitis , Xylella , Virulência , Sistemas de Secreção Tipo II/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Doenças das Plantas/microbiologia , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA