Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Front Biosci (Landmark Ed) ; 28(4): 83, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37114550

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a leading cause of end-stage blindness globally and is arguably one of the most disabling complications of both Type 1 and Type 2 diabetes. Sodium Glucose Cotransporter-2 (SGLT2) inhibitors have now been successfully introduced to clinical medicine and exert multiple beneficial effects in diabetic patients. Given the broad therapeutic application of SGLT2 inhibitors, we hypothesised that SGLT2 inhibition may alleviate the progression of DR. Therefore, we aimed to compare the effectiveness of two clinically available SGLT2 inhibitors, Empagliflozin and Canagliflozin, on the progression of Retinopathy and DR using well-characterised mouse models, Kimba and Akimba, respectively. METHODS: Empagliflozin, Canagliflozin (25 mg/kg/day) or vehicle was administered to 10-week-old mice via drinking water for 8-weeks. Urine glucose levels were measured to ascertain SGLT2 inhibition promoted glucose excretion. Weekly body weight and water intake measurements were obtained. After 8-weeks of treatment, body weight, daily water intake, fasting blood glucose levels were measured and eye tissue was harvested. The retinal vasculature was assessed using immunofluorescence. RESULTS: Empagliflozin treated Akimba mice exhibited metabolic benefits suggested by healthy body weight gain and significantly reduced fasting blood glucose levels. Treatment with Empagliflozin reduced retinal vascular lesions in both Kimba and Akimba mice. Canagliflozin improved body weight gain, reduced blood glucose levels in Akimba mice, and reduced the development of retinal vascular lesions in Kimba mice. CONCLUSIONS: Our data demonstrates that Empagliflozin has future potential as a therapeutic for Retinopathy and DR and should now be considered for human trials.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Retinianas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Camundongos , Animais , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/uso terapêutico , Glicemia/metabolismo , Hipoglicemiantes , Glucose , Peso Corporal
2.
Curr Hypertens Rep ; 24(3): 67-74, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235172

RESUMO

PURPOSE OF REVIEW: The moderate glucose-lowering effect of sodium glucose co-transporter 2 (SGLT2) inhibitors is unlikely to explain SGLT2 inhibitor-mediated beneficial outcomes, and unravelling the underlying mechanisms is a high priority in the research community. Given the dominant pathophysiologic role of the sympathetic nervous system activation in conditions such as hypertension and perturbed glucose homeostasis, it is pertinent to postulate that SGLT2 inhibitors may exert their beneficial effects at least in part via sympathetic inhibition. RECENT FINDINGS: SGLT2 inhibitors have shown enormous potential to improve cardiovascular outcomes in patients with type 2 diabetes, and their therapeutic potential is currently being investigated in a range of associated comorbidities such as heart failure and chronic kidney disease. Indeed, recent experimental data in relevant animal models highlight a bidirectional interaction between sympathetic nervous system activation and SGLT2 expression, and this facilitates several of the features associated with SGLT2 inhibition observed in clinical trials including improved glucose metabolism, weight loss, increased diuresis, and lowering of blood pressure. Currently available data highlight the various levels of interaction between the sympathetic nervous system and SGLT2 expression and explores the potential for SGLT2 inhibition as a therapeutic strategy in conditions commonly characterised by sympathetic activation.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Síndrome Metabólica , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Humanos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Síndrome Metabólica/tratamento farmacológico , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Simpatolíticos/uso terapêutico
3.
Diabetes Care ; 45(6): 1472-1475, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35344581

RESUMO

OBJECTIVE: We analyzed whether any change in capillary density in the retinal circulation could be detected in patients with hypertension in the prediabetic stage. RESEARCH DESIGN AND METHODS: In a cross-sectional analysis, we assessed capillary density in the foveal (CDF) and parafoveal retinal areas using optical coherence tomography-angiography in 62 patients with hypertension and normal glucose metabolism and 40 patients with hypertension and prediabetes. RESULTS: The CDF was lower in patients with prediabetes than in those with normal glucose metabolism. Moreover, we found a correlation between CDF and HbA1c and glucose levels for the entire cohort. In patients with HbA1c <6.5% (48 mmol/mol), CDF was lower in patients with HOMA for insulin resistance (HOMA-IR) ≥2.5 than in patients with HOMA-IR <2.5. CONCLUSIONS: Patients with hypertension and prediabetes display retinal capillary changes, and an association with markers of glucose metabolism exists, even within a nondiabetic HbA1c range.


Assuntos
Hipertensão , Resistência à Insulina , Estado Pré-Diabético , Glicemia/metabolismo , Estudos Transversais , Glucose , Hemoglobinas Glicadas/metabolismo , Humanos , Hipertensão/complicações , Estado Pré-Diabético/complicações
4.
Front Biosci (Landmark Ed) ; 27(12): 321, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36624945

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a major cause of blindness globally. Sodium Glucose Cotransporter-2 (SGLT2) inhibitors have been demonstrated to exert cardiorenal protection in patients with diabetes. However, their potential beneficial effect on DR is less well studied. The aim of the present study was to determine the effects of the SGLT2 inhibition with Dapagliflozin (DAPA) on DR in well-characterised DR mouse models and controls. METHODS: Dapagliflozin was administered to mice with and without diabetes for 8 weeks via their drinking water at 25 mg/kg/day. Urine glucose levels were measured weekly and their response to glucose was tested at week 7. After 8 weeks of treatment, eye tissue was harvested under terminal anaesthesia. The retinal vasculature and neural structure were assessed using immunofluorescence, immunohistochemistry and electron microscopy techniques. RESULTS: Dapagliflozin treated DR mice exhibited metabolic benefits reflected by healthy body weight gain and pronounced glucose tolerance. Dapagliflozin reduced the development of retinal microvascular and neural abnormalities, increased the beneficial growth factor FGF21 (Fibroblast Growth Factor 21). We highlight for the first time that SGLT2 inhibition results in the upregulation of SGLT1 protein in the retina and that SGLT1 is significantly increased in the diabetic retina. CONCLUSIONS: Blockade of SGLT2 activity with DAPA may reduce retinal microvascular lesions in our novel DR mouse model. In conclusion, our data demonstrates the exciting future potential of SGLT1 and/or SGLT2 inhibition as a therapeutic for DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Transportador 2 de Glucose-Sódio/metabolismo , Retinopatia Diabética/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Glucose/metabolismo , Modelos Animais de Doenças
6.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921881

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease affecting a quarter of the global population and is often associated with adverse health outcomes. The increasing prevalence of MAFLD occurs in parallel to that of metabolic syndrome (MetS), which in fact plays a major role in driving the perturbations of cardiometabolic homeostasis. However, the mechanisms underpinning the pathogenesis of MAFLD are incompletely understood. Compelling evidence from animal and human studies suggest that heightened activation of the sympathetic nervous system is a key contributor to the development of MAFLD. Indeed, common treatment strategies for metabolic diseases such as diet and exercise to induce weight loss have been shown to exert their beneficial effects at least in part through the associated sympathetic inhibition. Furthermore, pharmacological and device-based approaches to reduce sympathetic activation have been demonstrated to improve the metabolic alterations frequently present in patients with obesity, MetSand diabetes. Currently available evidence, while still limited, suggests that sympathetic activation is of specific relevance in the pathogenesis of MAFLD and consequentially may offer an attractive therapeutic target to attenuate the adverse outcomes associated with MAFLD.


Assuntos
Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Humanos , Fígado/inervação , Sistema Nervoso Simpático/metabolismo
7.
Clin Res Cardiol ; 110(5): 740-753, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33635438

RESUMO

BACKGROUND: Cardiovascular and metabolic regulation is governed by neurohumoral signalling in relevant organs such as kidney, liver, pancreas, duodenum, adipose tissue, and skeletal muscle. Combined targeting of relevant neural outflows may provide a unique therapeutic opportunity for cardiometabolic disease. OBJECTIVES: We aimed to investigate the feasibility, safety, and performance of a novel device-based approach for multi-organ denervation in a swine model over 30 and 90 days of follow-up. METHODS: Five Yorkshire cross pigs underwent combined percutaneous denervation in the renal arteries and the common hepatic artery (CHA) with the iRF Denervation System. Control animals (n = 3) were also studied. Specific energy doses were administered in the renal arteries and CHA. Blood was collected at 30 and 90 days. All animals had a pre-terminal procedure angiography. Tissue samples were collected for norepinephrine (NEPI) bioanalysis. Histopathological evaluation of collateral structures and tissues near the treatment sites was performed to assess treatment safety. RESULTS: All animals entered and exited the study in good health. No stenosis or vessel abnormalities were present. No significant changes in serum chemistry occurred. NEPI concentrations were significantly reduced in the liver (- 88%, p = 0.005), kidneys (- 78%, p < 0.001), pancreas (- 78%, p = 0.018) and duodenum (- 95%, p = 0.028) following multi-organ denervation treatment compared to control animals. Histologic findings were consistent with favourable tissue responses at 90 days follow-up. CONCLUSIONS: Significant and sustained denervation of the treated organs was achieved at 90 days without major safety events. Our findings demonstrate the feasibility of multi-organ denervation using a novel iRF Denervation System in a single procedure.


Assuntos
Artéria Hepática/cirurgia , Artéria Renal/cirurgia , Simpatectomia/métodos , Angiografia , Animais , Fatores de Risco Cardiometabólico , Modelos Animais de Doenças , Estudos de Viabilidade , Seguimentos , Artéria Hepática/inervação , Humanos , Norepinefrina/metabolismo , Artéria Renal/inervação , Suínos , Simpatectomia/efeitos adversos , Fatores de Tempo
8.
Sci Rep ; 11(1): 1001, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441624

RESUMO

Microvascular disease and rarefaction are key pathological hallmarks of hypertension. The retina uniquely allows direct, non-invasive investigation of the microvasculature. Recently developed optical coherence tomography angiography now allows investigation of the fine retinal capillaries, which may provide a superior marker of overall vascular damage. This was a prospective cross-sectional study to collect retinal capillary density data on 300 normal eyes from 150 hypertensive adults, and to investigate possible associations with other organ damage markers. The average age of participants was 54 years and there was a greater proportion of males (85; 57%) than females. Multivariate, confounder adjusted linear regression showed that retinal capillary rarefaction in the parafovea was associated with increased pulse wave velocity (ß = - 0.4, P = 0.04), log-albumin/creatinine ratio (ß = - 0.71, P = 0.003), and with reduced estimated glomerular filtration rate (ß = 0.04, P = 0.02). Comparable significant associations were also found for whole-image vascular-density, for foveal vascular-density significant associations were found with pulse wave velocity and estimated glomerular filtration rate only. Our results indicate that retinal capillary rarefaction is associated with arterial stiffness and impaired kidney function. Retinal capillary rarefaction may represent a useful and simple test to assess the integrated burden of hypertension on the microvasculature irrespective of current blood pressure levels.


Assuntos
Artérias/patologia , Capilares/patologia , Fóvea Central/patologia , Hipertensão/patologia , Rim/patologia , Rarefação Microvascular/patologia , Vasos Retinianos/patologia , Pressão Sanguínea/fisiologia , Estudos Transversais , Feminino , Angiofluoresceinografia/métodos , Taxa de Filtração Glomerular/fisiologia , Humanos , Masculino , Microcirculação/fisiologia , Microvasos/patologia , Pessoa de Meia-Idade , Estudos Prospectivos , Análise de Onda de Pulso/métodos , Tomografia de Coerência Óptica/métodos , Rigidez Vascular/fisiologia
9.
J Clin Hypertens (Greenwich) ; 23(2): 309-316, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340251

RESUMO

Patients with progressing chronic kidney disease (CKD) are more likely to experience cardio- and cerebrovascular events than progressing to end-stage renal disease. The authors explored whether retinal microvascular calibers differed with the degree of renal impairment and between the standard and extended optic disk and may serve as a simple additional tool for risk stratification in this highly vulnerable patient cohort. The authors analyzed central retinal arteriolar and venular equivalent calibers (CRAE, CRVE) at different retinal zones (zone B&C) using digital retinal imaging in hypertensive patients with stage 2 (n = 66) or stage 3 CKD (n = 30). Results were adjusted for age, sex, HbA1c, and 24-hour diastolic blood pressure. Mean eGFR was 77.7 ± 8.9 and 48.8 ± 7.9 ml/min/1.73 m2 for stage 2 and 3 CKD, respectively. CRAE and CRVE in zones B and C were significantly lower in patients with stage 3 CKD compared to patients with stage 2 CKD (CRAE-B:141.1 ± 21.4 vs. 130.5 ± 18.9 µm, p = .030; CRAE-C:137.4 ± 19.4 vs 129.2 ± 18.2 µm, p = .049; CRVE-B:220.8 ± 33.0 vs. 206.0 ± 28.4 µm, p = .004; and CRVE-C:215.9 ± 33.0 vs. 201.2 ± 25.1µm, p = .003). In patients with stage 2 CKD, CRAE-B was higher than CRAE-C (141.1 ± 21.4 vs. 137.4 ± 19.4µm, p < .001). In contrast, such a difference was not found in patients with stage 3 CKD. CRAE of both retinal zones correlated with eGFR for the entire cohort. In patients with stage 3 CKD, retinal narrowing is more pronounced compared to patients with stage 2 CKD. Whether the novel observation of difference in arteriolar caliber between zones B and C in stage 2 CKD could serve as an early marker of CKD progression warrants further investigation.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Arteríolas , Taxa de Filtração Glomerular , Humanos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Vasos Retinianos/diagnóstico por imagem
10.
J Clin Hypertens (Greenwich) ; 23(1): 44-52, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270963

RESUMO

Night-time blood pressure (BP) is an important predictor of cardiovascular outcomes. Its assessment, however, remains challenging due to limited accessibility to ambulatory BP devices in many settings, costs, and other factors. We hypothesized that BP measured in a supine position during daytime may perform similarly to night-time BP when modeling their association with vascular hypertension-mediated organ damage (HMOD). Data from 165 hypertensive patients were used who as part of their routine clinic workup had a series of standardized BP measurements including seated attended office, seated and supine unattended office, and ambulatory BP monitoring. HMOD was determined by assessment of kidney function and pulse wave velocity. Correlation analysis was carried out, and univariate and multivariate models were fitted to assess the extent of shared variance between the BP modalities and their individual and shared contribution to HMOD variables. Of all standard non-24-hour systolic BP assessments, supine systolic BP shared the highest degree of variance with systolic night-time BP. In univariate analysis, both systolic supine and night-time BP were strong determinants of HMOD variables. In multivariate models, supine BP outperformed night-time BP as the most significant determinant of HMOD. These findings indicate that supine BP may not only be a clinically useful surrogate for night-time BP when ambulatory BP monitoring is not available, but also highlights the possibility that unattended supine BP may be more closely related to HMOD than other BP measurement modalities, a proposition that requires further investigations in prospective studies.


Assuntos
Hipertensão , Análise de Onda de Pulso , Pressão Sanguínea , Monitorização Ambulatorial da Pressão Arterial , Humanos , Hipertensão/diagnóstico , Estudos Prospectivos
11.
J Hypertens ; 39(2): 250-258, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33031168

RESUMO

OBJECTIVE: Although the detrimental effect of increased mean blood pressure (BP) is well established, the role of the dynamic and circadian features of BP is less well defined but may be similarly important. In this prospective analysis of hypertensive patients from a tertiary hospital hypertension clinic, we investigated whether the presence of night-time systolic hypertension is associated with more pronounced end-organ damage as assessed by measures of pulse wave analysis (PWA) and pulse wave velocity (PWV). METHODS: A cohort of 222 consecutive hypertensive patients underwent ambulatory blood pressure measurements, PWA, PWV testing and collection of routine clinical data. Group differences and group-effects of daytime and night-time hypertension on target organ damage and cardiovascular risk parameters were analysed. RESULTS: Nocturnal hypertension was evident in more than half of the study population. PWV, central systolic, mean arterial and pulse pressure were higher in patients with nocturnal hypertension. Stratification into four groups according to daytime and night-time hypertension status revealed group differences in all outcome parameters. Posthoc testing for individual group differences demonstrated significant differences between fully controlled individuals and the group with high daytime and night-time BP. In a regression analysis for independent effects of categorical night-time and daytime hypertension, nocturnal hypertension was a significant predictor for all PWA and PWV outcomes. CONCLUSION: Nocturnal hypertension was a highly prevalent phenotype in this population and associated with increased central BP and more pronounced target organ damage as indicated by elevated PWV. Regression analysis confirmed the role of night-time hypertension as an independent explanatory variable for elevated PWV.


Assuntos
Ritmo Circadiano , Hipertensão , Rigidez Vascular , Pressão Sanguínea , Monitorização Ambulatorial da Pressão Arterial , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Fenótipo , Análise de Onda de Pulso
12.
Biomedicines ; 8(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218034

RESUMO

Recent preclinical data show that sodium glucose cotransporter 2 (SGLT2) inhibitors are able to reduce weight gain and induce beiging in white adipose tissue (WAT). We have previously shown that in neurogenic hypertensive Schlager (BPH/2J) mice, treatment with the SGLT2 inhibitor, Dapagliflozin, reduced blood pressure and prevented weight gain. Here we show that chemical sympathetic denervation achieved by systemic administration of 6-hydroxy-dopamine (6-OHDA) reduces body weight and the heightened sympathetic nervous system (SNS) innervation in WAT. Furthermore, we demonstrate that 2 weeks of Dapagliflozin treatment increases SNS innervation in WAT of hypertensive mice. This increase is accompanied by a non-significant elevation in mRNA levels of the Ucp1 and Pgc-1α genes, which are markers of beiging. No significant difference in the mRNA levels of the inflammatory mediators Il-6 and Tnf-α were detected in WAT of Dapagliflozin treated mice. These findings suggest that SGLT-2 inhibitor-associated prevention of weight gain may be mediated, at least in part, by inducing the beiging of WAT.

13.
J Clin Med ; 9(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858953

RESUMO

Studying the role of circulatory factors in the pathogenesis of diseases has been key to the development of effective therapies. We sought to examine the effect of antihypertensive therapies on numerous circulatory factors including short chain fatty acids and growth factors in a human cohort. A subset of participants from an earlier study was characterized by their hypertensive and/or treatment status and separated into three groups: (i) normotensives; (ii) untreated hypertensive and (iii) treated hypertensive subjects. Circulating levels of short chain fatty acids, FGF21 and TNF superfamily members were measured as part of this study. Both F2-isoprostane and circulating lipid levels were reanalysed as part of this current study. We found that antihypertensive treatment increased butyrate levels and decreased acetate levels to levels similar to normotensives. We also found that antihypertensive treatments reduced levels of circulating FGF21, TNFSF14 and TNF-α. In conclusion, we identified several circulatory factors that are altered in hypertension.

14.
World J Gastroenterol ; 26(23): 3225-3235, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32684737

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is associated with major chronic microvascular complications which contribute significantly to diabetes associated morbidity. The protein primarily responsible for glucose reabsorption in the kidney is sodium glucose co-transporter 2 (SGLT2). Presently, SGLT2 inhibitors are widely used in diabetic patients to improve blood glucose levels and prevent cardiovascular and renal complications. Given the broad therapeutic application of SGLT2 inhibitors, we hypothesised that SGLT2 inhibition may exert its protective effects via alterations of the gut microbiome and tested this in a type 1 diabetic mouse model of diabetic retinopathy. AIM: To determine whether the treatment with two independent SGLT2 inhibitors affects gut health in a type 1 diabetic mouse model. METHODS: The SGLT2 inhibitors empagliflozin or dapagliflozin (25 mg/kg/d) or vehicle dimethylsulfoxide (DMSO) were administered to C57BL/6J, Akita, Kimba and Akimba mice at 10 wk of age for 8 wk via their drinking water. Serum samples were collected and the concentration of succinate and the short chain fatty acid (SCFA) butyric acid was measured using gas chromatography-mass spectrometry. Enzyme-linked immunosorbent assay (ELISA) was performed to determine the concentration of insulin and leptin. Furthermore, the norepinephrine content in kidney tissue was determined using ELISA. Pancreatic tissue was collected and stained with haematoxylin and eosin and analysed using brightfield microscopy. RESULTS: Due to the presence of the Akita allele, both Akita and Akimba mice showed a reduction in insulin production compared to C57BL/6J and Kimba mice. Furthermore, Akita mice also showed the presence of apoptotic bodies within the pancreatic islets. The acinar cells of Akita and Akimba mice showed swelling which is indicative of acute injury or pancreatitis. After 8 wk of SGLT2 inhibition with dapagliflozin, the intermediate metabolite of gut metabolism known as succinate was significantly reduced in Akimba mice when compared to DMSO treated mice. In addition, empagliflozin resulted in suppression of succinate levels in Akimba mice. The beneficial SCFA known as butyric acid was significantly increased in Akita mice after treatment with dapagliflozin when compared to vehicle treated mice. The norepinephrine content in the kidney was significantly reduced with both dapagliflozin and empagliflozin therapy in Akita mice and was significantly reduced in Akimba mice treated with empagliflozin. In non-diabetic C57BL/6J and Kimba mice, serum leptin levels were significantly reduced after dapagliflozin therapy. CONCLUSION: The inhibition of SGLT2 reduces the intermediate metabolite succinate, increases SCFA butyric acid levels and reduces norepinephrine content in mouse models of T1D. Collectively, these improvements may represent an important mechanism underlying the potential benefits of SGLT2 inhibition in T1D and its complications.


Assuntos
Diabetes Mellitus Experimental , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Sódio , Transportador 2 de Glucose-Sódio , Ácido Succínico
15.
Expert Opin Pharmacother ; 21(10): 1157-1166, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32301361

RESUMO

INTRODUCTION: Sodium-glucose cotransporter 2 (SGLT2) inhibitors such as Empagliflozin are novel antihyperglycemic drugs approved for the treatment of type 2 diabetes (T2D). In addition to its glucose-lowering effects, Empagliflozin promotes weight loss, blood pressure reduction, and other beneficial metabolic benefits. AREAS COVERED: This review outlines the pharmacokinetics, pharmacodynamics, safety, and tolerability of Empagliflozin and discusses its role in diabetes-associated hypertension. EXPERT OPINION: Empagliflozin was the first in class to not only demonstrate safety of SGLT2 inhibition but also cardio- and reno-protective effects in an adequately powered cardiovascular outcome trial. The EMPA-REG study showed significant reductions in mortality from cardiovascular causes, hospitalization for heart failure, and progression of diabetic kidney disease. These benefits cannot be attributed to glycemic control alone, suggesting the involvement of other SGLT2 inhibition-mediated mechanisms. Recent data suggests the potential utility of SGLT2 inhibition in other conditions including type 1 diabetes (T1D) and non-diabetic heart failure patients with clinical trials currently being conducted. In concert with ongoing pre-clinical investigations to unravel the mechanisms contributing to cardiorenal protection, the full therapeutic potential of SGLT2 inhibition will become apparent over the next few years and promises to be one of the major success stories in clinical medicine. ABBREVIATIONS: T1D: type 1 diabetes; T2D: type 2 diabetes; SGLT2: sodium-glucose cotransporter 2; CVD: cardiovascular disease; SBP: systolic blood pressure; DBP: diastolic blood pressure; SNS: sympathetic nervous system; BP: blood pressure; CV: cardiovascular; ZDF: Zucker diabetic fatty; CKD: chronic kidney disease; FDA: Food and Drug Administration.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Glucosídeos/uso terapêutico , Hipertensão/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
16.
JACC Basic Transl Sci ; 5(2): 169-179, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32140623

RESUMO

Recent clinical trial data suggest a cardiorenal protective effect of sodium glucose cotransporter 2 (SGLT2) inhibition. We demonstrate that chemical denervation in neurogenic hypertensive Schlager (BPH/2J) mice reduced blood pressure, improved glucose homeostasis, and reduced renal SGLT2 protein expression. Inhibition of SGLT2 prevented weight gain, reduced blood pressure, significantly reduced elevations of tyrosine hydroxylase and norepinephrine, and protects against endothelial dysfunction. These findings provide evidence for significant crosstalk between activation of the sympathetic nervous system and SGLT2 regulation and possible ancillary effects on endothelial function, which may contribute to the observed cardiorenal protective effects of SGLT2 inhibition.

17.
Neural Regen Res ; 15(3): 512-518, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31571663

RESUMO

Hypertension is a risk factor for a large number of vision-threatening eye disorders. In this study, we investigated for the first time the retinal neural structure of the hypertensive BPH/2J mouse (Schlager mouse) and compared it to its control counterpart, the normotensive BPN/3J strain. The BPH/2J mouse is a selectively inbred mouse strain that develops chronic hypertension due to elevated sympathetic nervous system activity. When compared to the BPN/3J strain, the hypertensive BPH/2J mice showed a complete loss of outer layers of the neural retina at 21 weeks of age, which was indicative of a severe vision-threatening disease potentially caused by hypertension. To elucidate whether the retinal neural phenotype in the BPH/2J strain was attributed to increased BP, we investigated the neural retina of both BPN/3J and BPH/2J mice at 4 weeks of age. Our preliminary results showed for the first time that the BPH/2J strain develops severe retinal neural damage at a young age. Our findings suggest that the retinal phenotype in the BPH/2J mouse is possibly due to elevated blood pressure and may be contributed by an early onset spontaneous mutation which is yet to be identified or a congenital defect occurring in this strain. Further characterization of the BPH/2J mouse strain is likely to i) elucidate gene defects underlying retinal disease; ii) understand mechanisms leading to neural retinal disease and iii) permit testing of molecules for translational research to interfere with the progression of retinal disease. The animal experiments were performed with the approval of the Royal Perth Hospital Animal Ethics Committee (R535/17-18) on June 1, 2017.

18.
Biomedicines ; 7(1)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871285

RESUMO

Healthy kidneys are important for the efficient regulation of metabolism. However, there is an ever increasing population of patients suffering from both acute and chronic kidney diseases that disrupt this homeostasis. This review will explore the emerging roles that interleukin 6 (IL-6) cytokine family members play in the pathogenesis of kidney disease. The IL-6 family of cytokines are involved in a diverse range of physiological functions. In relation to kidney disease, their involvement is no less diverse. Evidence from both preclinical and clinical sources show that IL-6 cytokine family members can play either a deleterious or protective role in response to kidney disease. This appears to be dependent on the type of kidney disease in question or the specific cytokine. Current attempts to use or target IL-6 cytokine family members as therapies of kidney diseases will be highlighted throughout this review. Finally, the involvement of IL-6 cytokine family members in kidney disease will be presented in the context of three regularly overlapping conditions: obesity, hypertension and diabetes.

20.
Curr Diab Rep ; 18(11): 107, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232652

RESUMO

PURPOSE OF REVIEW: Cardiometabolic disorders such as obesity, metabolic syndrome and diabetes are increasingly common and associated with adverse cardiovascular outcomes. The mechanisms driving these developments are incompletely understood but likely to include autonomic dysregulation. The latest evidence for such a role is briefly reviewed here. RECENT FINDINGS: Recent findings highlight the relevance of autonomic regulation in glucose metabolism and identify sympathetic activation, in concert with parasympathetic withdrawal, as a major contributor to the development of metabolic disorders and an important mediator of the associated adverse cardiovascular consequences. Methods targeting sympathetic overactivity using pharmacological and device-based approaches are available and appear as logical additional approaches to curb the burden of metabolic disorders and alleviate the associated morbidity from cardiovascular causes. While the available data are encouraging, the role of therapeutic inhibition of sympathetic overdrive in the prevention of the metabolic disorders and the associated adverse outcomes requires adequate testing in properly sized randomised controlled trials.


Assuntos
Sistema Nervoso Autônomo/metabolismo , Glicemia/metabolismo , Homeostase , Sistema Nervoso Simpático/metabolismo , Humanos , Inflamação/patologia , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...