Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 284(10): e21633, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708504

RESUMO

Several families of neogastropod mollusks independently evolved the ability to drill through mineralized prey skeletons using their own mineralized feeding teeth, sometimes with shell-softening chemical agents produced by an organ in the foot. Teeth with more durable tooth shapes should extend their use and improve predator performance, but past studies have described only the cusped-side of teeth, mostly overlooking morphologies related to functional interactions between teeth. Here, we describe the three-dimensional morphology of the central drilling tooth (rachidian) from four species of the neogastropod family Muricidae using synchrotron tomographic microscopy and assemble a three-dimensional model of a multitooth series in drilling position for two of them to investigate their dynamic form. We find two new types of articulating surfaces, including a saddle joint at either end of the rachidian and a large tongue-and-groove joint in the center. The latter has a shape that maximizes contact surface area between teeth as they rotate away from each other during drilling. Articulating joints have not been described in Neogastropod radula previously, but they are consistent with an earlier hypothesis that impact forces on individual teeth during predatory drilling are dispersed by tooth-tooth interactions.


Assuntos
Gastrópodes , Animais , Imageamento Tridimensional , Síncrotrons , Membrana Celular ,
2.
PLoS One ; 17(4): e0265095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35385498

RESUMO

The Florida Horse Conch, Triplofusus giganteus, one of the largest marine gastropods in the world, has been intensely exploited by shell collectors, curio dealers, and commercial harvest for over a century and is now in decline. Effective management of horse conch populations requires better data on commercial and recreational harvest intensities but also on the species' intrinsic capacity to recover. Here, we use stable oxygen and carbon isotope sclerochronology to investigate the horse conch's life history, including its maximum life span, growth rates, age at first spawning, and number of lifetime spawning seasons. The largest two shells studied (460 and 475 mm linear shell length) grew for 13 and 11 years, respectively. Growth curves for these shells, extrapolated out to the length of the record size shell (606 mm linear shell length) predict a maximum age of just 16 years. Carbon isotopes and field photographs of spawning females suggest that females mature relatively late in life. However, the largest horse conchs remaining in the wild are also smaller and younger than those studied here. Thus, the largest females left in the wild could have few lifetime spawning events. High fecundity can buffer horse conchs from overfishing but only if females reach spawning age and reproductive-age females are protected. Our study highlights the usefulness of stable isotope sclerochronology for characterizing the life histories of molluscan species now too uncommon to study through traditional mark and recapture approaches.


Assuntos
Conservação dos Recursos Naturais , Gastrópodes , Animais , Feminino , Pesqueiros , Florida , Cavalos , Reprodução , Estações do Ano
3.
Biol Lett ; 16(2): 20190865, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32019462

RESUMO

The Gulf of Mexico (GoM) is home to the world's largest remaining wild oyster fisheries, but baseline surveys needed to assess habitat condition are recent and may represent an already-shifted reference state. Here, we use prehistoric oysters from archaeological middens to show that oyster size, an indicator of habitat function and population resilience, declined prior to the earliest assessments of reef condition in an area of the GoM previously considered pristine. Stable isotope sclerochronlogy reveals extirpation of colossal oysters occurred through truncated life history and slowed growth. More broadly, our study suggests that management strategies affected by shifting baselines may overestimate resilience and perpetuate practices that risk irreversible decline.


Assuntos
Crassostrea , Animais , Ecossistema , Pesqueiros , Golfo do México , México
4.
Proc Natl Acad Sci U S A ; 107(23): 10549-54, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20534581

RESUMO

Oysters (Crassostrea virginica) were a central component of the Chesapeake Bay ecosystem in 1607 when European settlers established Jamestown, VA, the first permanent English settlement in North America. These estuarine bivalves were an important food resource during the early years of the James Fort (Jamestown) settlement while the colonists were struggling to survive in the face of inadequate supplies and a severe regional drought. Although oyster shells were discarded as trash after the oysters were eaten, the environmental and ecological data recorded in the bivalve geochemistry during shell deposition remain intact over centuries, thereby providing a unique window into conditions during the earliest Jamestown years. We compare oxygen isotope data from these 17th century oyster shells with modern shells to quantify and contrast estuarine salinity, season of oyster collection, and shell provenance during Jamestown colonization (1609-1616) and the 21st century. Data show that oysters were collected during an extended drought between fall 1611 and summer 1612. The drought shifted the 14 psu isohaline above Jamestown Island, facilitating individual oyster growth and extension of oyster habitat upriver toward the colony, thereby enhancing local oyster food resources. Data from distinct well layers suggest that the colonists also obtained oysters from reefs near Chesapeake Bay to augment oyster resources near Jamestown Island. The oyster shell season of harvest reconstructions suggest that these data come from either a 1611 well with a very short useful period or an undocumented older well abandoned by late 1611.


Assuntos
Secas , Ostreidae/química , Animais , Ecossistema , Rios , Fatores de Tempo , Virginia
5.
Science ; 306(5705): 2229-31, 2004 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-15618513

RESUMO

Extinction may alter competitive interactions among surviving species, affecting their subsequent recovery and evolution, but these processes remain poorly understood. Analysis of predation traces produced by shell-drilling muricid snails on bivalve prey reveals that species interactions were substantially different before and after a Plio-Pleistocene mass extinction in the western Atlantic. Muricids edge- and wall-drilled their prey in the Pliocene, but Pleistocene and Recent snails attacked prey only through the shell wall. Experiments with living animals suggest that intense competition induces muricid snails to attack shell edges. Pliocene predators, therefore, probably competed for resources more intensely than their post-extinction counterparts.


Assuntos
Ecossistema , Moluscos , Caramujos/fisiologia , Animais , Comportamento Competitivo , Comportamento Alimentar , Fósseis , Dinâmica Populacional , Comportamento Predatório , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...