Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3905, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400450

RESUMO

The trigger, pace, and nature of the intensification of Northern Hemisphere Glaciation (iNHG) are uncertain, but can be probed by study of ODP Site 1208 North Pacific marine sediments. Herein, we present magnetic proxy data that indicate a 4-fold increase of dust between ~ 2.73 and ~ 2.72 Ma, with subsequent increases at the start of glacials thereafter, indicating a strengthening of the mid-latitude westerlies. Moreover, a permanent shift in dust composition after 2.72 Ma is observed, consistent with drier conditions in the source region and/or the incorporation of material which could not have been transported via the weaker Pliocene winds. The sudden increase in our dust proxy data, a coeval rapid rise in dust recorded by proxy dust data in the North Atlantic (Site U1313), and the Site 1208 shift in dust composition, suggest that the iNHG represents a permanent crossing of a climate threshold toward global cooling and ice sheet growth, ultimately driven by lower atmospheric CO2.

2.
Science ; 377(6601): 116-119, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771904

RESUMO

The Miocene Climatic Optimum (MCO) from ~17 to 14 million years ago (Ma) represents an enigmatic reversal in Cenozoic cooling. A synthesis of marine paleotemperature records shows that the MCO was a local maximum in global sea surface temperature superimposed on a period from at least 19 Ma to 10 Ma, during which global temperatures were on the order of 10°C warmer than at present. Our high-resolution global reconstruction of ocean crustal production, a proxy for tectonic degassing of carbon, suggests that crustal production rates were ~35% higher than modern rates until ~14 Ma, when production began to decline steeply along with global temperatures. The magnitude and timing of the inferred changes in tectonic degassing can account for the majority of long-term ice sheet and global temperature evolution since 20 Ma.

3.
Nature ; 589(7840): 70-75, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408375

RESUMO

The prevailing mid-latitude westerly winds, known as the westerlies, are a fundamental component of the climate system because they have a crucial role in driving surface ocean circulation1 and modulating air-sea heat, momentum and carbon exchange1-3. Recent work suggests that westerly wind belts are migrating polewards in response to anthropogenic forcing4,5. Reconstructing the westerlies during past warm periods such as the Pliocene epoch, in which atmospheric carbon dioxide (CO2) was about 350 to 450 parts per million6 and temperatures were about 2 to 4 degrees Celsius higher than today7, can improve our understanding of changes in the position and strength of these wind systems as the climate continues to warm. Here we show that the westerlies were weaker and more poleward during the warm Pliocene than during glacial periods after the intensification of Northern Hemisphere glaciation (iNHG), which occurred around 2.73 million years ago8. Our results, which are based on dust and export productivity reconstructions, indicate that major ice sheet development during the iNHG was accompanied by substantial increases in dust fluxes in the mid-latitude North Pacific Ocean, especially compared to those in the subarctic North Pacific. Following this shift, changes in dust and productivity largely track the glacial-interglacial cycles of the late Pliocene and early Pleistocene epochs. On the basis of this pattern, we infer that shifts in the westerlies were primarily driven by variations in Plio-Pleistocene thermal gradients and ice volume. By combining this relationship with other dust records9-11 and climate modelling results12, we find that the proposed changes in the westerlies were globally synchronous. If the Pliocene is predictive of future warming, we posit that continued poleward movement and weakening of the present-day westerlies in both hemispheres can be expected.

4.
Nat Commun ; 12(1): 15, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397905

RESUMO

Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C37 tetra-unsaturated methyl alkenone (%C37:4). Elevated %C37:4 is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C37:4 methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica. More importantly, the %C37:4 in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C37:4 concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C37:4 is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales.

6.
Sci Adv ; 5(4): eaau6060, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30949573

RESUMO

The timing and mechanisms of the eastern equatorial Pacific (EEP) cold tongue development, a salient feature of the tropical ocean, are intensely debated on geological time scales. Here, we reconstruct cold tongue evolution over the past 8 million years by computing changes in temperature gradient between the cold tongue and eastern Pacific warm pool. Results indicate that the cold tongue remained very weak between 8 and 4.3 million years ago, implying much weaker zonal temperature gradients prevailing during the late Miocene-Pliocene, but then underwent gradual intensification with apparently increasing sensitivity of the cold tongue to extratropical temperature changes. Our results reveal that the EEP cold tongue intensification was mainly controlled by extratropical climate.

7.
Science ; 328(5985): 1530-4, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20558711

RESUMO

Determining the timing and amplitude of tropical sea surface temperature (SST) change is an important part of solving the puzzle of the Plio-Pleistocene ice ages. Alkenone-based tropical SST records from the major ocean basins show coherent glacial-interglacial temperature changes of 1 degrees to 3 degrees C that align with (but slightly lead) global changes in ice volume and deep ocean temperature over the past 3.5 million years. Tropical temperatures became tightly coupled with benthic delta18O and orbital forcing after 2.7 million years. We interpret the similarity of tropical SST changes, in dynamically dissimilar regions, to reflect "top-down" forcing through the atmosphere. The inception of a strong carbon dioxide-greenhouse gas feedback and amplification of orbital forcing at approximately 2.7 million years ago connected the fate of Northern Hemisphere ice sheets with global ocean temperatures since that time.

8.
Science ; 323(5922): 1714-8, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19251592

RESUMO

The Pliocene warm interval has been difficult to explain. We reconstructed the latitudinal distribution of sea surface temperature around 4 million years ago, during the early Pliocene. Our reconstruction shows that the meridional temperature gradient between the equator and subtropics was greatly reduced, implying a vast poleward expansion of the ocean tropical warm pool. Corroborating evidence indicates that the Pacific temperature contrast between the equator and 32 degrees N has evolved from approximately 2 degrees C 4 million years ago to approximately 8 degrees C today. The meridional warm pool expansion evidently had enormous impacts on the Pliocene climate, including a slowdown of the atmospheric Hadley circulation and El Niño-like conditions in the equatorial region. Ultimately, sustaining a climate state with weak tropical sea surface temperature gradients may require additional mechanisms of ocean heat uptake (such as enhanced ocean vertical mixing).

9.
Anal Chem ; 79(9): 3430-5, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17391004

RESUMO

Hydrogen isotope ratios (2H/H or D/H) of long-chain unsaturated ketones (alkenones) preserved in lake and marine sediments hold great promise for paleoclimate studies. However, compound-specific hydrogen isotope analysis of individual alkenones has not been possible due to chromatographic coelution of alkenones with the same carbon chain length but different numbers of double bonds. Published studies have only reported the deltaD values of the mixture of coeluting alkenones. We developed an efficient procedure to isolate individual alkenones based on double-bond numbers using silica gel impregnated with silver nitrate. The chromatographic procedure is simple, inexpensive, and highly reproducible, offers 87-100% sample recovery, and allows for the first time hydrogen isotopic measurement on individual alkenones. deltaD values of specific di-, tri- and tetraunsaturated C37 alkenones produced by an Emiliania huxleyi culture, as well as those isolated from Greenland lake sediments, differ consecutively by 43-65 per thousand. These findings suggest that alkenones with different numbers of carbon-carbon double bonds express significantly different deltaD values and that coelution of different alkenones may lead to erroneous source water deltaD reconstructions. Our alkenone isolation approach opens a new avenue for paleoclimate reconstructions using hydrogen isotope ratios of individual alkenones.

10.
Science ; 312(5770): 79-83, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16601186

RESUMO

A tropical Pacific climate state resembling that of a permanent El Niño is hypothesized to have ended as a result of a reorganization of the ocean heat budget approximately 3 million years ago, a time when large ice sheets appeared in the high latitudes of the Northern Hemisphere. We report a high-resolution alkenone reconstruction of conditions in the heart of the eastern equatorial Pacific (EEP) cold tongue that reflects the combined influences of changes in the equatorial thermocline, the properties of the thermocline's source waters, atmospheric greenhouse gas content, and orbital variations on sea surface temperature (SST) and biological productivity over the past 5 million years. Our data indicate that the intensification of Northern Hemisphere glaciation approximately 3 million years ago did not interrupt an almost monotonic cooling of the EEP during the Plio-Pleistocene. SST and productivity in the eastern tropical Pacific varied in phase with global ice volume changes at a dominant 41,000-year (obliquity) frequency throughout this time. Changes in the Southern Hemisphere most likely modulated most of the changes observed.

11.
Nature ; 427(6976): 720-3, 2004 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-14973481

RESUMO

Many records of tropical sea surface temperature and marine productivity exhibit cycles of 23 kyr (orbital precession) and 100 kyr during the past 0.5 Myr (refs 1-5), whereas high-latitude sea surface temperature records display much more pronounced obliquity cycles at a period of about 41 kyr (ref. 6). Little is known, however, about tropical climate variability before the mid-Pleistocene transition about 900 kyr ago, which marks the change from a climate dominated by 41-kyr cycles (when ice-age cycles and high-latitude sea surface temperature variations were dictated by changes in the Earth's obliquity) to the more recent 100-kyr cycles of ice ages. Here we analyse alkenones from marine sediments in the eastern equatorial Pacific Ocean to reconstruct sea surface temperatures and marine productivity over the past 1.8 Myr. We find that both records are dominated by the 41-kyr obliquity cycles between 1.8 and 1.2 Myr ago, with a relatively small contribution from orbital precession, and that early Pleistocene sea surface temperatures varied in the opposite sense to local annual insolation in the eastern equatorial Pacific Ocean. We conclude that during the early Pleistocene epoch, climate variability at our study site must have been determined by high-latitude processes that were driven by orbital obliquity forcing.


Assuntos
Clima , Água do Mar , Alcenos/análise , Eucariotos/metabolismo , Sedimentos Geológicos/química , Gelo , Biologia Marinha , Oceano Pacífico , Água do Mar/microbiologia , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...