Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Phytochemistry ; 220: 114005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309451

RESUMO

Chemical investigation of ethyl acetate bark extracts of Indigofera ammoxylum red and white phenotypes led to the bio-guided isolation of four previously undescribed flavonoids, named (2S,3R)-3',7-dihydroxy-4',6-dimethoxyflavanol (1), (2S,3R)-6-methoxy-7-hydroxyflavanol (2), 2',3',7-trihydroxy-4',6-dimethoxyisoflavone (7) and 2',5' -dimethoxy-4',5,7-trihydroxyisoflavanone (8), along with 14 known compounds (3-6 and 9-18). The previously undescribed structures were characterized based on NMR, HRESIMS, UV and IR data. Published spectroscopic data were used to deduce the structure of the known compounds. Eleven of the 18 isolated metabolites were evaluated for anti-inflammatory activity and cytotoxic activity against human liver carcinoma cells and human colon and colorectal adenocarcinoma cells. All tested compounds showed an anti-inflammatory activity (IC50 NO < 25 µg/mL), and compounds 2 and 3 were more selective than the positive control dexamethasone. Afromorsin (6) showed promising cytotoxic properties against both cancer cell lines (IC50 18.9 and 11.4 µg/mL). Feature-based molecular networking approach applied to bark and leaves extracts of the two phenotypes allowed to detect bioactive analogues, belonging to the families of flavones, isoflavones, flavanones, flavanols and flavonols, and to explore the chemodiversity of the species. The red and white phenotypes have a similar composition, whereas bark and leaves contain specific chemical entities. Finally, this approach highlighted a cluster of potentially bioactive and undescribed metabolites.


Assuntos
Flavanonas , Indigofera , Humanos , Flavonoides/química , Flavonóis , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Estrutura Molecular
3.
Antioxidants (Basel) ; 12(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37891949

RESUMO

Oxidative stress contributes to impairment of skin health, the wound healing process, and pathologies such as psoriasis or skin cancer. Five Polynesian medicinal plants, among the most traditionally used for skin care (pimples, wounds, burns, dermatoses) are studied herein for their antioxidant properties: Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata, and Ficus prolixa. Plant extracts were submitted to in vitro bioassays related to antioxidant properties and their bioactive constituents were identified by a metabolomic analytical approach. High performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) analysis was performed leading to the characterization of 61 metabolites. Compounds annotated for F. prolixa and C. subcordata extracts were reported for the first time. Antioxidant properties were evaluated by total phenolic content (TPC), free radical scavenging DPPH (1,1-diphenyl-2-picryl-hydrazyl), and Ferric Reducing Antioxidant Power activity (FRAP) assays. F. prolixa extract was the most active one and showed antioxidant intracellular activity on keratinocytes by Anti Oxydant Power 1 assay. Online HPLC-DPPH allowed the identification of phenolic bioactive compounds such as quercetin-O-rhamnoside, rosmarinic acid, chlorogenic acid, procyanidins, epicatechin, 5-O-caffeoylshikimic acid, and curcumin as being responsible for the scavenging properties of these plant extracts. These results highlight the potential of F. prolixa aerial roots as a source of antioxidants for skin care applications.

4.
Metabolites ; 13(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37233623

RESUMO

Isocaloteysmannic acid (1), a new chromanone, was isolated from the leaf extract of the medicinal species Calophyllum tacamahaca Willd. along with 13 known metabolites belonging to the families of biflavonoids (2), xanthones (3-5, 10), coumarins (6-8) and triterpenes (9, 11-14). The structure of the new compound was characterized based on nuclear magnetic resonance (NMR), high-resolution electrospray mass spectrometry (HRESIMS), ultraviolet (UV) and infrared (IR) data. Its absolute configuration was assigned through electronic circular dichroism (ECD) measurements. Compound (1) showed a moderate cytotoxicity against HepG2 and HT29 cell lines, with IC50 values of 19.65 and 25.68 µg/mL, respectively, according to the Red Dye method. Compounds 7, 8 and 10-13 exhibited a potent cytotoxic activity, with IC50 values ranging from 2.44 to 15.38 µg/mL, against one or both cell lines. A feature-based molecular networking (FBMN) approach led to the detection of a large amount of xanthones in the leaves extract, and particularly analogues of the cytotoxic isolated xanthone pyranojacareubin (10).

5.
J Ethnopharmacol ; 315: 116619, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37201665

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Extracts of the aerial part of Phyllanthus amarus have been extensively used in several countries to cure diabetes. No data is available on the impact of gastrointestinal digestion of such crude extracts on their antidiabetic activity. AIM OF THE STUDY: The aim of this study was to identify active fractions and compounds of fresh aerial parts of P. amarus extracted by an infusion method that are responsible for antidiabetic effects occurring at the level of glucose homeostasis. MATERIALS AND METHODS: An aqueous extract was obtained by an infusion method and its polyphenolic composition was analysed by reverse phase UPLC-DAD-MS. The influence of in vitro gastrointestinal digestion was evaluated both on the chemical composition and on the antidiabetic effect of P. amarus infusion extract using glucose-6-phosphatase enzyme inhibition and stimulation of glucose uptake. RESULTS: Analysis of the chemical composition of the crude extract revealed the presence of polysaccharides and various families of polyphenols such as phenolic acids, tannins, flavonoids and lignans. After simulated digestion, the total content of polyphenols decreased by about 95%. Caffeoylglucaric acid derivates and lignans exhibited strong stimulation of glucose uptake similar to metformin with an increase of 35.62 ± 6.14% and 34.74 ± 5.33% respectively. Moreover, corilagin, geraniin, the enriched polysaccharides fraction and the bioaccessible fraction showed strong anti-hyperglycemic activity with about 39-62% of glucose-6-phosphatase inhibition. CONCLUSION: Caffeoylglucaric acid isomers, tannin acalyphidin M1 and lignan demethyleneniranthin were reported for the first time in the species. After in vitro gastroinstestinal digestion, the composition of the extract changed. The dialyzed fraction showed strong glucose-6-phosphatase inhibition.


Assuntos
Diabetes Mellitus , Lignanas , Phyllanthus , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Phyllanthus/química , Glucose-6-Fosfatase , Lignanas/farmacologia , Hipoglicemiantes/farmacologia , Polifenóis/farmacologia , Glucose , Digestão
6.
Nat Prod Res ; : 1-10, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37086477

RESUMO

CDK7 and FynB protein kinases have been recognized as relevant targets for cancer and brain diseases treatment due to their pivotal regulatory roles in cellular functions such as cell cycle and neural signal transduction. Several studies demonstrated that the inhibition of these proteins could be useful in altering the onset or progression of these diseases. Based on bioassay-guided approach, the extract of the marine sponge Lendenfeldia chondrodes (Thorectidae), which exhibited interesting kinase inhibitory activities, was fractionated. The investigation led to the isolation of five known 1-5 and one new 6 polybrominated diphenyl ethers (PBDEs). Their structure elucidation was established based on spectroscopic data (NMR and HRMS) and comparison with literature data.

7.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985700

RESUMO

Antrocaryon klaineanum is traditionally used for the treatment of back pain, malaria, female sterility, chlamydiae infections, liver diseases, wounds, and hemorrhoid. This work aimed at investigating the bioactive compounds with antileishmanial and antiplasmodial activities from A. klaineanum. An unreported glucocerebroside antroklaicerebroside (1) together with five known compounds (2-6) were isolated from the root barks of Antrocaryon klaineanum using chromatographic techniques. The NMR, MS, and IR spectroscopic data in association with previous literature were used for the characterization of all the isolated compounds. Compounds 1-4 are reported for the first time from A. klaineanum. The methanol crude extract (AK-MeOH), the n-hexane fraction (AK-Hex), the dichloromethane fraction (AK-DCM), the ethyl acetate fraction (AK-EtOAc), and compounds 1-6 were all evaluated for their antiparasitic effects against Plasmodium falciparum strains susceptible to chloroquine (3D7), resistant to chloroquine (Dd2), and promastigotes of Leishmania donovani (MHOM/SD/62/1S). The AK-Hex, AK-EtOAc, AK-MeOH, and compound 2 were strongly active against Dd2 strain with IC50 ranging from 2.78 ± 0.06 to 9.30 ± 0.29 µg/mL. Particularly, AK-MeOH was the most active-more than the reference drugs used-with an IC50 of 2.78 ± 0.06 µg/mL. The AK-EtOAc as well as all the tested compounds showed strong antileishmanial activities with IC50 ranging from 4.80 ± 0.13 to 9.14 ± 0.96 µg/mL.


Assuntos
Anacardiaceae , Antimaláricos , Antiprotozoários , Antimaláricos/farmacologia , Antimaláricos/química , Anacardiaceae/química , Extratos Vegetais/química , Antiprotozoários/farmacologia , Cloroquina , Plasmodium falciparum
8.
ACS Omega ; 7(47): 43068-43083, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467926

RESUMO

Sponges are prolific producers of specialized metabolites with unique structural scaffolds. Their chemical diversity has always inspired natural product chemists working in drug discovery. As part of their metabolic filter-feeding activities, sponges are known to release molecules, possibly including their specialized metabolites. These released "Exo-Metabolites" (EMs) may be considered as new chemical reservoirs that could be collected from the water column while preserving marine biodiversity. The present work aims to determine the proportion and diversity of specialized EMs released by the sponge Aplysina cavernicola (Vacelet 1959). This Mediterranean sponge produces bromo-spiroisoxazoline alkaloids that are widely distributed in the Aplysinidae family. Aquarium experiments were designed to facilitate a continuous concentration of dissolved and diluted metabolites from the seawater around the sponges. Mass Spectrometry (MS)-based metabolomics combined with a dereplication pipeline were performed to investigate the proportion and identity of brominated alkaloids released as EMs. Chemometric analysis revealed that brominated features represented 12% of the total sponge's EM features. Consequently, a total of 13 bromotyrosine alkaloids were reproducibly detected as EMs. The most abundant ones were aerothionin, purealidin L, aerophobin 1, and a new structural congener, herein named aplysine 1. Their structural identity was confirmed by NMR analyses following their isolation. MS-based quantification indicated that these major brominated EMs represented up to 1.0 ± 0.3% w/w of the concentrated seawater extract. This analytical workflow and collected results will serve as a stepping stone to characterize the composition of A. cavernicola's EMs and those released by other sponges through in situ experiments, leading to further evaluate the biological properties of such EMs.

9.
Mar Drugs ; 20(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36286460

RESUMO

A chemical study of the CH2Cl2-MeOH (1:1) extract from the sponge Ernsta naturalis collected in Rodrigues (Mauritius) based on a molecular networking dereplication strategy highlighted one novel aminopyrimidone alkaloid compound, ernstine A (1), seven new aminoimidazole alkaloid compounds, phorbatopsins D-E (2, 3), calcaridine C (4), naamines H-I (5, 7), naamidines J-K (6, 8), along with the known thymidine (9). Their structures were established by spectroscopic analysis (1D and 2D NMR spectra and HRESIMS data). To improve the investigation of this unstudied calcareous marine sponge, a metabolomic study by molecular networking was conducted. The isolated molecules are distributed in two clusters of interest. Naamine and naamidine derivatives are grouped together with ernstine in the first cluster of twenty-three molecules. Phorbatopsin derivatives and calcaridine C are grouped together in a cluster of twenty-one molecules. Interpretation of the MS/MS spectra of other compounds of these clusters with structural features close to the isolated ones allowed us to propose a structural hypothesis for 16 compounds, 5 known and 11 potentially new.


Assuntos
Alcaloides , Poríferos , Animais , Espectrometria de Massas em Tandem , Estrutura Molecular , Poríferos/química , Alcaloides/química , Timidina
10.
Mar Drugs ; 20(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35323485

RESUMO

The biological screening of 44 marine sponge extracts for the research of bioactive molecules, with potential application in the treatment of age-related diseases (cancer and Alzheimer's disease) and skin aging, resulted in the selection of Scopalina hapalia extract for chemical study. As no reports of secondary metabolites of S. hapalia were found in the literature, we undertook this research to further extend current knowledge of Scopalina chemistry. The investigation of this species led to the discovery of four new compounds: two butenolides sinularone J (1) and sinularone K (2), one phospholipid 1-O-octadecyl-2-pentanoyl-sn-glycero-3-phosphocholine (3) and one lysophospholipid 1-O-(3-methoxy-tetradecanoyl)-sn-glycero-3-phosphocholine (4) alongside with known lysophospholipids (5 and 6), alkylglycerols (7-10), epidioxysterols (11 and 12) and diketopiperazines (13 and 14). The structure elucidation of the new metabolites (1-4) was determined by detailed spectroscopic analysis, including 1D and 2D NMR as well as mass spectrometry. Molecular networking was also explored to complement classical investigation and unravel the chemical classes within this species. GNPS analysis provided further information on potential metabolites with additional bioactive natural compounds predicted.


Assuntos
4-Butirolactona/análogos & derivados , Produtos Biológicos , Fosfolipídeos , Piperazinas , Poríferos/química , 4-Butirolactona/química , 4-Butirolactona/isolamento & purificação , Animais , Baías , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Comores , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Piperazinas/química , Piperazinas/isolamento & purificação , Poríferos/metabolismo
11.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36670912

RESUMO

Aloe plant species have been used for centuries in traditional medicine and are reported to be an important source of natural products. However, despite the large number of species within the Aloe genus, only a few have been investigated chemotaxonomically. A Molecular Network approach was used to highlight the different chemical classes characterizing the leaves of five Aloe species: Aloe macra, Aloe vera, Aloe tormentorii, Aloe ferox, and Aloe purpurea. Aloe macra, A. tormentorii, and A. purpurea are endemic from the Mascarene Islands comprising Reunion, Mauritius, and Rodrigues. UHPLC-MS/MS analysis followed by a dereplication process allowed the characterization of 93 metabolites. The newly developed MolNotator algorithm was usedfor molecular networking and allowed a better exploration of the Aloe metabolome chemodiversity. The five species appeared rich in polyphenols (anthracene derivatives, flavonoids, phenolic acids). Therefore, the total phenolic content and antioxidant activity of the five species were evaluated, and a DPPH-On-Line-HPLC assay was used to determine the metabolites responsible for the radical scavenging activity. The use of computational tools allowed a better description of the comparative phytochemical profiling of five Aloe species, which showed differences in their metabolite composition, both qualitative and quantitative. Moreover, the molecular network approach combined with the On-Line-HPLC assay allowed the identification of 9 metabolites responsible for the antioxidant activity. Two of them, aloeresin A and coumaroylaloesin, could be the principal metabolites responsible for the activity. From 374 metabolites calculated by MolNator, 93 could be characterized. Therefore, the Aloe species can be a rich source of new chemical structures that need to be discovered.

12.
Antioxidants (Basel) ; 10(2)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573143

RESUMO

Tamanu oil from Calophyllum inophyllum L. has long been used in traditional medicine. Ethanol extraction was found the best strategy for recovering bioactive compounds from the resin part of Tamanu oil, yielding two neutral and acidic resins fractions with high phenolics, flavonoids and pyranocoumarins concentrations. A further cascade of LPLC/HPLC separations of neutral and acidic resin fractions allowed identifying fifteen metabolites, and among them, calanolide D and 12-oxocalanolide A (both in neutral fraction) were first identified from a natural source. All these extracts, subfractions and isolated metabolites demonstrated increased free radical scavenging, antioxidant, anti-inflammatory, antimicrobial and antimycobacterial activity compared to Tamanu oil and its de-resinated lipid phase. Overall, these results could promote resinous ethanol-soluble Tamanu oil extracts as a useful multifaceted and renewable medicinal resource.

13.
Molecules ; 27(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011341

RESUMO

The term cosmetopoeia refers to the use of plants in folks' cosmetics. The aerial parts of Bidens pilosa L., the leaves of Calophyllum inophyllum L. and the fruits of Fagraea berteroana A.Gray ex Benth are traditionally used in French Polynesia for hair and skin care. During the hair cycle, dermal papilla cells and their interaction with epithelial cells are essential to promote hair follicle elongation. The aim of our investigations was the identification of metabolites from these three plants and chemical families responsible for their hair growth activity. A bioactivity-based molecular network was produced by mapping the correlation between features obtained from LC-MS/MS data and dermal papilla cell proliferation, using the Pearson correlation coefficient. The analyses pointed out glycosylated flavonols and phenolic acids from B. pilosa and C. inophyllum, along with C-flavonoids, iridoids and secoiridoids from F. berteroana, as potential bioactive molecules involved in the proliferation of hair follicle dermal papilla cells. Our results highlight the metabolites of the plant species potentially involved in the induction of hair follicle growth and support the traditional uses of these plants in hair care.


Assuntos
Folículo Piloso/citologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Humanos , Modelos Teóricos , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
14.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977422

RESUMO

Hair loss is becoming increasingly prevalent as dietary and living habits change. The search for natural products to limit hair loss has led to tapping into traditional cosmetic knowledge. We studied three plants of the Polynesian cosmetopoeia, Bidens pilosa, Calophyllum inophyllum and Fagraea berteroana, to determine their ability to promote hair growth. Their chemical content was characterized by liquid chromatography coupled to mass spectrometry (LC-MS). Their proliferative activity on dermal papilla cells (DPCs) was assessed via MTT assay and molecular targets were evaluated by RT-qPCR analysis of seven factors involved in the modulation of the hair cycle, CCND1, LEF1, DKK1, WNT5A PPARD, TGFΒ1, PPARD and RSPO2. Our results show that our extracts significantly increased proliferation of dermal papilla cells. Furthermore, LC-MS/MS analysis revealed a diversity of molecules, flavonoids, iridoids and organic acids, some known for hair-inducing properties. Finally, specific extracts and fractions of all three plants either upregulated CCND1, LEF1 and PPARD involved in stimulating hair follicle proliferation and/or lowered the gene expression levels of hair growth inhibiting factors, DKK1 and TGFB1. Our findings suggest that extracts from B. pilosa, C. inophyllum and F. berteroana are interesting candidates to stimulate hair growth.


Assuntos
Derme/citologia , Derme/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Traqueófitas/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Folículo Piloso/citologia , Humanos , Via de Sinalização Wnt/efeitos dos fármacos
15.
Mar Drugs ; 18(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635268

RESUMO

Chemical study of the CH2Cl2-MeOH (1:1) extract from the sponge Haliclona sp. collected in Mayotte highlighted three new long-chain highly oxygenated polyacetylenes, osirisynes G-I (1-3) together with the known osirisynes A (4), B (5), and E (6). Their structures were elucidated by 1D and 2D NMR spectra and HRESIMS and MS/MS data. All compounds were evaluated on catalase and sirtuin 1 activation and on CDK7, proteasome, Fyn kinase, tyrosinase, and elastase inhibition. Five compounds (1; 3-6) inhibited proteasome kinase and two compounds (5-6) inhibited CDK7 and Fyn kinase. Osirisyne B (5) was the most active compound with IC50 on FYNB kinase, CDK7 kinase, and proteasome inhibition of 18.44 µM, 9.13 µM, and 0.26 µM, respectively.


Assuntos
Haliclona , Polímero Poliacetilênico/química , Inibidores de Proteassoma/química , Animais , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Polímero Poliacetilênico/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
16.
Phytochemistry ; 176: 112401, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464510

RESUMO

Psiadia arguta (Asteraceae) is endemic to the island of Mauritius in the Indian Ocean. The species is traditionally used to treat various ailments, such as its use as an expectorant or for the treatment of bronchitis and asthma. Preliminary biological screenings have displayed the antimalarial (Plasmodium falciparum) and anticancer (HeLa human cell line) potential of P. arguta leaves. The phytochemical investigation of this plant has led to the isolation and characterization of sixteen compounds including five antiplasmodial molecules. The accumulation of the antiplasmodial compounds during the growth of the plant was studied by a 1H NMR-based metabolomic approach. In order to identify factors influencing the production of bioactive compounds, young plants of P. arguta were multiplied using in vitro culture techniques, and micro-propagated plants at different stages of development were acclimatized and followed for the experiments. The multivariate data analysis showed an accumulation of four bioactive compounds in the leaves of P. arguta when these plants were challenged with a biotic stress: labdan-13(E)-en-8α-ol-15-yl acetate, labdan-8α-ol-15-yl acetate, labdan-13(E)-ene-8α-ol-15-diol, and (8R,13S)-labdan-8,15-diol.


Assuntos
Antimaláricos , Asteraceae , Humanos , Extratos Vegetais , Folhas de Planta , Plasmodium falciparum , Espectroscopia de Prótons por Ressonância Magnética
17.
Biomolecules ; 10(1)2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878243

RESUMO

Seven naphtho-gamma-pyrones (NγPs), including asperpyrone E, aurasperone A, dianhydroaurasperone C, fonsecin, fonsecinone A, fonsecin B, and ustilaginoidin A, were isolated from Aspergillus tubingensis G131, a non-toxigenic strain. The radical scavenging activity of these NγPs was evaluated using ABTS assay. The Trolox equivalent antioxidant capacity on the seven isolated NγPs ranged from 2.4 to 14.6 µmol L-1. The toxicity and ability of the NγPs to prevent H2O2-mediated cell death were evaluated using normal/not cancerous cells (CHO cells). This cell-based assay showed that NγPs: (1) Are not toxic or weakly toxic towards cells and (2) are able to protect cells from oxidant injuries with an IC50 on H2O2-mediated cell death ranging from 2.25 to 1800 µmol mL-1. Our data show that A. tubingensis G131 strain is able to produce various NγPs possessing strong antioxidant activities and low toxicities, making this strain a good candidate for antioxidant applications in food and cosmetic industries.


Assuntos
Antioxidantes/metabolismo , Antioxidantes/farmacologia , Aspergillus/metabolismo , Naftalenos/metabolismo , Naftalenos/farmacologia , Pironas/química , Animais , Antioxidantes/química , Benzotiazóis/química , Células CHO , Morte Celular/efeitos dos fármacos , Cricetulus , Peróxido de Hidrogênio/farmacologia , Naftalenos/química , Ácidos Sulfônicos/química
18.
PeerJ ; 7: e6896, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198623

RESUMO

BACKGROUND: Different parts of the tree Calophyllum inophyllum L. (nuts, leaves, roots, bark, fruits, nut oil and resin) are used as traditional medicines and cosmetics in most of the Pacific Islands. The oil efficiency as a natural cure and in traditional cosmetics has been largely described throughout the South Pacific, which led us to investigate C. inophyllum's chemical and genetic diversity. A correlative study of the nut resin and leaf DNA from three distinct archipelagos in the South Pacific was carried out in order to identify diversity patterns in C. inophyllum across the South Pacific. METHODS: Calophyllum inophyllum plants were sampled from French Polynesia, New Caledonia and Fiji. We extracted tamanu oil (nut oil) resin for chemo-diversity studies and sampled leaf tissues for genetic studies. We applied an analysis method designed for small quantities (at a microscale level), and used High Performance Liquid Chromatography (HPLC) to establish the chemo-diversity of tamanu oil resin. In-house standards were co-eluted for qualitative determination. Genetic diversity was assessed using chloroplast barcoding markers (the Acetyl-CoA carboxylase (accD) gene and the psaA-ycf3 intergenic spacer region). RESULTS: Our HPLC analysis revealed 11 previously known tamanu oil constituents, with variability among plant samples. We also isolated and characterized two new neoflavonoids from tamanu oil resin namely, tamanolide E1 and E2 which are diastereoisomers. Although genetic analysis revealed low genetic variation, our multivariate analysis (PCA) of the tamanu oil resin chemical profiles revealed differentiation among geographic regions. CONCLUSION: We showed here that chromatographic analysis using formalized in-house standards of oil resin compounds for co-elution studies against oil resin samples could identify patterns of variation among samples of C. inophyllum, and discriminate samples from different geographical origins.

19.
J Nat Prod ; 82(5): 1361-1366, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30943031

RESUMO

An ethyl acetate extract of Psiadia arguta leaves showed in vitro antiplasmodial activity against Plasmodium falciparum with IC50 values of 12.3 ± 2.4 µg/mL (3D7 strain) and 13.5 ± 3.4 µg/mL (W2 strain). Phytochemical investigation led to the isolation and characterization of 16 compounds including four new diterpenoids: labdan-8α-ol-15-yl-(formate) (1), labdan-8α-ol-15-yl-(2-methylbutanoate) (2), labdan-8α-ol-15-yl-(3-methylpentanoate) (3), and labdan-8α-ol-15-yl-(labdanolate) (4). The latter compounds were characterized by spectroscopic methods (1D and 2D NMR, HRMS, and IR). The in vitro antiplasmodial activities of all compounds were evaluated. The known compounds labdan-13( E)-en-8α-ol-15-yl acetate (5), labdan-8α-ol-15-yl acetate (6), 13- epi-sclareol (7), labdan-13( E)-ene-8α,15-diol (8), and (8 R,13 S)-labdane-8α,15-diol (9) exhibited antiplasmodial effects, with IC50 values of 29.1, 33.2, 35.0, 36.6, and 22.2 µM, respectively.


Assuntos
Antimaláricos/farmacologia , Asteraceae/química , Diterpenos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Diterpenos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Espectrofotometria Infravermelho
20.
J Ethnopharmacol ; 226: 176-184, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30102993

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Flowers of Inula montana L. (Asteraceae), commonly known as "Arnica de Provence", are used in the traditional medicine of Provence in France with the same indication as Arnica montana, for the relief of bruises, as an anti-inflammatory agent. AIMS OF THE STUDY: The aim of our study is to evaluate its anti-inflammatory properties and to justify its traditional uses. Its potential valorization is evaluated in order to propose Inula montana as an alternative to Arnica montana. MATERIALS AND METHODS: Bio-guided fractionation of ethanolic extract allowed the isolation of compounds responsible of the inhibition of NO production. The fractionation was realized using chromatographic techniques and structure elucidation was conducted by ESI-MS and NMR spectral data. Anti-inflammatory effect of ethanolic extract, different fractions and isolated pure compounds was studied in vitro on immortalized mouse macrophages RAW 264.7. An analytical UHPLC-DAD-ESI-MS/MS method was developed for the identification of these compounds in the herbal drug. This UHPLC-DAD method was validated and was used to compare the phenolic profile and content in plant material from the two collection sites: Bonnieux and Merindol. RESULTS: Eleven compounds were identified by UHPLC-MS. Chlorogenic acid (1), Luteolin (2), Nepetin (3), 3,5-O-Dicaffeoylquinic acid (4), 1,5-O-Dicaffeoylquinic acid (5), Nepitrin (6), Hispiduloside (7) and Jaceosid (8) were isolated and identified by NMR. Compounds 9, 10 and 11 were confirmed to be 6-Hydroxykaempferol 3,7-dimethyl ether, Hispidulin and Chrysosplenol C, respectively by comparing retention times and MS/MS data with those of the authentic substances. Six compounds: 1 and 4-8 are reported for the first time in Inula montana L. Compounds 2-8 showed promising anti-inflammatory activity with the release of NO with IC50 value < 7 µM. The UHPLC-DAD method of quantification of three major bioactive compounds (1, 3 and 5) was validated. CONCLUSION: Flowers extracts and isolated compounds present promising anti-inflammatory activity which provides a scientific basis for the traditional use of Inula montana and may be proposed in the same indications as Arnica montana. The developed and validated simple, accurate and rapid UHPLC method can be used for the quality control of the herbal drug.


Assuntos
Anti-Inflamatórios/farmacologia , Inula , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Bioensaio , Cromatografia Líquida de Alta Pressão , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Flores , Camundongos , Óxido Nítrico/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...