RESUMO
BACKGROUND: Leptospirosis is a neglected zoonosis which remains poorly known despite its epidemic potential, especially in tropical islands where outdoor lifestyle, vulnerability to invasive reservoir species and hot and rainy climate constitute higher risks for infections. Burden remains poorly documented while outbreaks can easily overflow health systems of these isolated and poorly populated areas. Identification of generic patterns driving leptospirosis dynamics across tropical islands would help understand its epidemiology for better preparedness of communities. In this study, we aim to model leptospirosis seasonality and outbreaks in tropical islands based on precipitation and temperature indicators. METHODOLOGY/PRINCIPAL FINDINGS: We adjusted machine learning models on leptospirosis surveillance data from seven tropical islands (Guadeloupe, Reunion Island, Fiji, Futuna, New Caledonia, and Tahiti) to investigate 1) the effect of climate on the disease's seasonal dynamic, i.e., the centered seasonal profile and 2) inter-annual anomalies, i.e., the incidence deviations from the seasonal profile. The model was then used to estimate seasonal dynamics of leptospirosis in Vanuatu and Puerto Rico where disease incidence data were not available. A robust model, validated across different islands with leave-island-out cross-validation and based on current and 2-month lagged precipitation and current and 1-month lagged temperature, can be constructed to estimate the seasonal dynamic of leptospirosis. In opposition, climate determinants and their importance in estimating inter-annual anomalies highly differed across islands. CONCLUSIONS/SIGNIFICANCE: Climate appears as a strong determinant of leptospirosis seasonality in tropical islands regardless of the diversity of the considered environments and the different lifestyles across the islands. However, predictive and expandable abilities from climate indicators weaken when estimating inter-annual outbreaks and emphasize the importance of these local characteristics in the occurrence of outbreaks.
Assuntos
Leptospirose , Estações do Ano , Clima Tropical , Leptospirose/epidemiologia , Leptospirose/microbiologia , Humanos , Surtos de Doenças , Incidência , Ilhas , Aprendizado de Máquina , Temperatura , Porto Rico/epidemiologia , Vanuatu/epidemiologia , AnimaisRESUMO
BACKGROUND: Leptospirosis is among the leading zoonotic causes of morbidity and mortality worldwide. Knowledge about spatial patterns of diseases and their underlying processes have the potential to guide intervention efforts. However, leptospirosis is often an underreported and misdiagnosed disease and consequently, spatial patterns of the disease remain unclear. In the absence of accurate epidemiological data in the urban agglomeration of Santa Fe, we used a knowledge-based index and cluster analysis to identify spatial patterns of environmental and socioeconomic suitability for the disease and potential underlying processes that shape them. METHODS: We geocoded human leptospirosis cases derived from the Argentinian surveillance system during the period 2010 to 2019. Environmental and socioeconomic databases were obtained from satellite images and publicly available platforms on the web. Two sets of human leptospirosis determinants were considered according to the level of their support by the literature and expert knowledge. We used the Zonation algorithm to build a knowledge-based index and a clustering approach to identify distinct potential sets of determinants. Spatial similarity and correlations between index, clusters, and incidence rates were evaluated. RESULTS: We were able to geocode 56.36% of the human leptospirosis cases reported in the national epidemiological database. The knowledge-based index showed the suitability for human leptospirosis in the UA Santa Fe increased from downtown areas of the largest cities towards peri-urban and suburban areas. Cluster analysis revealed downtown areas were characterized by higher levels of socioeconomic conditions. Peri-urban and suburban areas encompassed two clusters which differed in terms of environmental determinants. The highest incidence rates overlapped areas with the highest suitability scores, the strength of association was low though (CSc r = 0.21, P < 0.001 and ESc r = 0.19, P < 0.001). CONCLUSIONS: We present a method to analyze the environmental and socioeconomic suitability for human leptospirosis based on literature and expert knowledge. The methodology can be thought as an evolutive and perfectible scheme as more studies are performed in the area and novel information regarding determinants of the disease become available. Our approach can be a valuable tool for decision-makers since it can serve as a baseline to plan intervention measures.
Assuntos
Leptospirose , Cidades/epidemiologia , Análise por Conglomerados , Humanos , Incidência , Leptospirose/epidemiologia , Fatores de Risco , Fatores SocioeconômicosRESUMO
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field.