Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 195: 106721, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331005

RESUMO

Hydrogen sulfide (H2S), a gasotransmitter, plays a crucial role in vasorelaxation, anti-inflammatory processes and mitigating myocardial ischemia/reperfusion-induced injury by regulating various signaling processes. We designed a water soluble H2S-releasing ascorbic acid derivative, BM-164, to combine the beneficial cardiovascular and anti-inflammatory effects of H2S with the excellent water solubility and antioxidant properties of ascorbic acid. DPPH antioxidant assay revealed that the antioxidant activity of BM-164 in the presence of a myocardial tissue homogenate (extract) increased continuously over the 120 min test interval due to the continuous release of H2S from BM-164. The cytotoxicity of BM-164 was tested by MTT assay on H9c2 cells, which resulted in no cytotoxic effect at concentrations of 10 to 30 µM. The possible beneficial effects of BM-164 (30 µM) was examined in isolated 'Langendorff' rat hearts. The incidence of ventricular fibrillation (VF) was significantly reduced from its control value of 79 % to 31 % in the BM-164 treated group, and the infarct size was also diminished from the control value of 28 % to 14 % in the BM-164 treated group. However, coronary flow (CF) and heart rate (HR) values in the BM-164 treated group did not show significantly different levels in comparison with the drug-free control, although a non-significant recovery in both CF and HR was observed at each time point. We attempted to reveal the mechanism of action of BM-164, focusing on the processes of autophagy and apoptosis. The expression of key autophagic and apoptotic markers in isolated rat hearts were detected by Western blot analysis. All the examined autophagy-related proteins showed increased expression levels in the BM-164 treated group in comparison to the drug-free control and/or ascorbic acid treated groups, while the changes in the expression of apoptotic markers were not obvious. In conclusion, the designed water soluble H2S releasing ascorbic acid derivative, BM-164, showed better cardiac protection against ischemia/reperfusion-induced injury compared to the untreated and ascorbic acid treated hearts, respectively.


Assuntos
Sulfeto de Hidrogênio , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Antioxidantes/farmacologia , Ratos Wistar , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Isquemia , Anti-Inflamatórios/uso terapêutico , Água , Reperfusão , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico
2.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139095

RESUMO

In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Ácido N-Acetilneuramínico/farmacologia , Ácido N-Acetilneuramínico/metabolismo , Hemaglutininas/farmacologia , Neuraminidase/metabolismo , Vírus da Influenza A Subtipo H3N2 , Ácidos Neuramínicos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo
3.
Sci Rep ; 13(1): 19618, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949940

RESUMO

(-)-Cannabidiol (CBD) and (-)-cannabigerol (CBG) are two major non-psychotropic phytocannabinoids that have many beneficial biological properties. However, due to their low water solubility and prominent first-pass metabolism, their oral bioavailability is moderate, which is unfavorable for medicinal use. Therefore, there is a great need for appropriate chemical modifications to improve their physicochemical and biological properties. In this study, Mannich-type reaction was used for the synthetic modification of CBD and CBG for the first time, and thus fifteen new cannabinoid derivatives containing one or two tertiary amino groups were prepared. Thereafter the antiviral, antiproliferative and antibacterial properties of the derivatives and their effects on certain skin cells were investigated. Some modified CBD derivatives showed remarkable antiviral activity against SARS-CoV-2 without cytotoxic effect, while synthetic modifications on CBG resulted in a significant increase in antiproliferative activity in some cases compared to the parent compound.


Assuntos
Canabidiol , Canabinoides , Canabidiol/farmacologia , Canabinoides/farmacologia , Disponibilidade Biológica , Antivirais/farmacologia
4.
Antioxidants (Basel) ; 12(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37760017

RESUMO

Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid that can be found in Cannabis sativa and possesses numerous pharmacological effects. Due to these promising effects, CBD can be used in a wide variety of diseases, for instance cardiovascular diseases. However, CBD, like tetrahydrocannabinol (THC), has low bioavailability, poor water solubility, and a variable pharmacokinetic profile, which hinders its therapeutic use. Chemical derivatization of CBD offers us potential ways to overcome these issues. We prepared three new CBD derivatives substituted on the aromatic ring by Mannich-type reactions, which have not been described so far for the modification of cannabinoids, and studied the protective effect they have on cardiomyocytes exposed to oxidative stress and hypoxia/reoxygenation (H/R) compared to the parent compound. An MTT assay was performed to determine the viability of rat cardiomyocytes treated with test compounds. Trypan blue exclusion and lactate dehydrogenase (LDH) release assays were carried out to study the effect of the new compounds in cells exposed to H2O2 or hypoxia/reoxygenation (H/R). Direct antioxidant activity was evaluated by a total antioxidant capacity (TAC) assay. To study antioxidant protein levels, HO-1, SOD, catalase, and Western blot analysis were carried out. pIC50 (the negative log of the IC50) values were as follows: CBD1: 4.113, CBD2: 3.995, CBD3: 4.190, and CBD: 4.671. The newly synthesized CBD derivatives prevented cell death induced by H/R, especially CBD2. CBD has the largest direct antioxidant activity. The levels of antioxidant proteins were increased differently after pretreatment with synthetic CBD derivatives and CBD. Taken together, our newly synthesized CBD derivatives are able to decrease cytotoxicity during oxidative stress and H/R. The compounds have similar or better effects than CBD on H9c2 cells.

5.
Sci Rep ; 13(1): 12228, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507429

RESUMO

Drug-resistant Plasmodium falciparum (Pf) infections are a major burden on the population and the healthcare system. The establishment of Pf resistance to most existing antimalarial therapies has complicated the problem, and the emergence of resistance to artemisinin derivatives is even more concerning. It is increasingly difficult to cure malaria patients due to the limited availability of effective antimalarial drugs, resulting in an urgent need for more efficacious and affordable treatments to eradicate this disease. Herein, new nucleoside analogues including morpholino-nucleoside hybrids and thio-substituted nucleoside derivatives were prepared and evaluated for in vitro and in vivo antiparasitic activity that led a few hits especially nucleoside-thiopyranoside conjugates, which are highly effective against Pf3D7 and PfRKL-9 strains in submicromolar concentration. One adenosine derivative and four pyrimidine nucleoside analogues significantly reduced the parasite burden in mouse models infected with Plasmodium berghei ANKA. Importantly, no significant hemolysis and cytotoxicity towards human cell line (RAW) was observed for the hits, suggesting their safety profile. Preliminary research suggested that these thiosugar-nucleoside conjugates could be used to accelerate the antimalarial drug development pipeline and thus deserve further investigation.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Animais , Camundongos , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Açúcares/farmacologia , Plasmodium falciparum , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Plasmodium berghei
6.
Eur J Pharm Sci ; 185: 106449, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37076051

RESUMO

Hydrogen sulfide (H2S) plays an important role in cardiac protection by regulating various redox signalings associated with myocardial ischemia/reperfusion (I/R) induced injury. The goal of the present investigations is the synthesis of a newly designed H2S-releasing ibuprofen derivative, BM-88, and its pharmacological characterization regarding the cardioprotective effects in isolated rat hearts. Cytotoxicity of BM-88 was also estimated in H9c2 cells. H2S-release was measured by an H2S sensor from the coronary perfusate. Increasing concentrations of BM-88 (1.0 to 20.0 µM) were tested in vitro studies. Preadministration of 10 µM BM-88 significantly reduced the incidence of reperfusion-induced ventricular fibrillation (VF) from its drug-free control value of 92% to 12%. However, no clear dose dependent reduction in the incidence of reperfusion-induced VF was observed while different concentrations of BM-88 were used. It was also found that 10 µM BM-88 provided a substantial protection and significantly reduced the infarct size in the ischemic/reperfused myocardium. However, this cardiac protection was not reflected in any significant changes in coronary flow and heart rates. The results support the fact that H2S release plays an important role mitigating reperfusion-induced cardiac damage.


Assuntos
Sulfeto de Hidrogênio , Traumatismo por Reperfusão , Ratos , Animais , Sulfeto de Hidrogênio/farmacologia , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Coração , Reperfusão
7.
Org Biomol Chem ; 21(10): 2213-2219, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36804654

RESUMO

Herein, we report a stereoselective synthesis of a novel type of conformationally constrained nucleoside analogue in which the sugar part is replaced by a new symmetrical tricycle consisting of a morpholine ring condensed with two imidazolidines. 1,5-Dialdehydes obtained from trityl- and dimethoxytrityl-protected uridine, ribothymidine, inosine, cytidine, adenosine and guanosine by metaperiodate oxidation were reacted with N1,N3-dibenzyl-1,2,3-triaminopropane; the latter reactant was produced using a new method that avoids explosive intermediates. Reactions of dialdehydes with propane-triamine via cascade tricyclization resulted in the corresponding triaza-tricyclic derivatives bearing three new stereogenic centers in high yields. Out of the eight possible diastereoisomers, one stereoisomer was formed in each case due to the chiral control of the starting nucleoside-dialdehydes and the steric constraint of the condensed ring system. The absolute configuration of the new stereotriad was determined by X-ray diffraction and NMR experiments. A mechanistic study performed under reductive conditions to trap the presumed bicyclic intermediate showed that the triamine reactant first attacks the 2'-aldehyde group, followed by a rapid bicyclization to form the imidazolidino-morpholine unit.

8.
Chemistry ; 29(11): e202203248, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36437234

RESUMO

The first concise and efficient synthesis of some fluorine-containing morpholino nucleosides has been developed. One synthetic strategy was based on the oxidative ring cleavage of the vicinal diol unit of uridine, cytidine adenosine and guanosine derivatives, followed by cyclisation of the dialdehyde intermediates by double reductive amination with fluorinated primary amines to obtain various N-fluoroalkylated morpholinos. Another approach involved cyclisation of the diformyl intermediates with ammonia source, followed by dithiocarbamate formation and desulfurization-fluorination with diethylaminosulfur trifluoride yielding the corresponding morpholine-based nucleoside analogues with a N-CF3 element in their structure.

9.
Sci Rep ; 12(1): 20921, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463278

RESUMO

Gram-negative bacteria possess intrinsic resistance to glycopeptide antibiotics so these important antibacterial medications are only suitable for the treatment of Gram-positive bacterial infections. At the same time, polymyxins are peptide antibiotics, structurally related to glycopeptides, with remarkable activity against Gram-negative bacteria. With the aim of breaking the intrinsic resistance of Gram-negative bacteria against glycopeptides, a polycationic vancomycin aglycone derivative carrying an n-decanoyl side chain and five aminoethyl groups, which resembles the structure of polymyxins, was prepared. Although the compound by itself was not active against the Gram-negative bacteria tested, it synergized with teicoplanin against Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii, and it was able to potentiate vancomycin against these Gram-negative strains. Moreover, it proved to be active against vancomycin- and teicoplanin-resistant Gram-positive bacteria.


Assuntos
Farmacorresistência Bacteriana , Polimixinas , Teicoplanina , Antibacterianos/farmacologia , Escherichia coli , Glicopeptídeos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Polimixinas/farmacologia , Teicoplanina/farmacologia , Vancomicina/farmacologia
10.
Sci Rep ; 12(1): 16001, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163239

RESUMO

Patients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2. It has been shown that the antiviral and antibacterial efficacy can be enhanced by synthetic modifications. We here report the synthesis and biological evaluation of seven derivatives of teicoplanin bearing hydrophobic or superbasic side chain. All but one teicoplanin derivatives were effective in inhibiting SARS-CoV-2 replication in VeroE6 cells. One lipophilic and three perfluoroalkyl conjugates showed activity against SARS-CoV-2 in human Calu-3 cells and against HCoV-229E, an endemic human coronavirus, in HEL cells. Pseudovirus entry and enzyme inhibition assays established that the teicoplanin derivatives efficiently prevent the cathepsin-mediated endosomal entry of SARS-CoV-2, with some compounds inhibiting also the TMPRSS2-mediated surface entry route. The teicoplanin derivatives showed good to excellent activity against Gram-positive bacteria resistant to all approved glycopeptide antibiotics, due to their ability to dually bind to the bacterial membrane and cell-wall. To conclude, we identified three perfluoralkyl and one monoguanidine analog of teicoplanin as dual inhibitors of Gram-positive bacteria and SARS-CoV-2.


Assuntos
COVID-19 , Fluorocarbonos , Antibacterianos/química , Antivirais/química , Catepsinas/farmacologia , Fluorocarbonos/farmacologia , Glicopeptídeos/química , Bactérias Gram-Positivas , Humanos , SARS-CoV-2 , Teicoplanina/farmacologia
11.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35056134

RESUMO

Various dimeric derivatives of the glycopeptide antibiotic teicoplanin were prepared with the aim of increasing the activity of the parent compound against glycopeptide-resistant bacteria, primarily vancomycin-resistant enterococci. Starting from teicoplanin, four covalent dimers were prepared in two orientations, using an α,ω-bis-isothiocyanate linker. Formation of a dimeric cobalt coordination complex of an N-terminal L-histidyl derivative of teicoplanin pseudoaglycone has been detected and its antibacterial activity evaluated. The Co(III)-induced dimerization of the histidyl derivative was demonstrated by DOSY experiments. Both the covalent and the complex dimeric derivatives showed high activity against VanA teicoplanin-resistant enterococci, but their activity against other tested bacterial strains did not exceed that of the monomeric compounds.

12.
Pharmaceutics ; 13(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34959310

RESUMO

Pleuromutilin is a fungal diterpene natural product with antimicrobial properties, semisynthetic derivatives of which are used in veterinary and human medicine. The development of bacterial resistance to pleuromutilins is known to be very slow, which makes the tricyclic diterpene skeleton of pleuromutilin a very attractive starting structure for the development of new antibiotic derivatives that are unlikely to induce resistance. Here, we report the very first synthetic modifications of pleuromutilin and lefamulin at alkene position C19-C20, by two different photoinduced addition reactions, the radical thiol-ene coupling reaction, and the atom transfer radical additions (ATRAs) of perfluoroalkyl iodides. Pleuromutilin were modified with the addition of several alkyl- and aryl-thiols, thiol-containing amino acids and nucleoside and carbohydrate thiols, as well as perfluoroalkylated side chains. The antibacterial properties of the novel semisynthetic pleuromutilin derivatives were investigated on a panel of bacterial strains, including susceptible and multiresistant pathogens and normal flora members. We have identified some novel semisynthetic pleuromutilin and lefamulin derivatives with promising antimicrobial properties.

13.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34832893

RESUMO

The protracted global COVID-19 pandemic urges the development of new drugs against the causative agent SARS-CoV-2. The clinically used glycopeptide antibiotic, teicoplanin, emerged as a potential antiviral, and its efficacy was improved with lipophilic modifications. This prompted us to prepare new lipophilic apocarotenoid conjugates of teicoplanin, its pseudoaglycone and the related ristocetin aglycone. Their antiviral effect was tested against SARS-CoV-2 in Vero E6 cells, using a cell viability assay and quantitative PCR of the viral RNA, confirming their micromolar inhibitory activity against viral replication. Interestingly, two of the parent apocarotenoids, bixin and ß-apo-8'carotenoic acid, exerted remarkable anti-SARS-CoV-2 activity. Mechanistic studies involved cathepsin L and B, as well as the main protease 3CLPro, and the results were rationalized by computational studies. Glycopeptide conjugates show dual inhibitory action, while apocarotenoids have mostly cathepsin B and L affinity. Since teicoplanin is a marketed antibiotic and the natural bixin is an approved, cheap and widely used red colorant food additive, these readily available compounds and their conjugates as potential antivirals are worthy of further exploration.

14.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832964

RESUMO

The increase in antibiotic resistance among Gram-positive bacteria underscores the urgent need to develop new antibiotics. New antibiotics should target actively growing susceptible bacteria that are resistant to clinically accepted antibiotics including bacteria that are not growing or are protected in a biofilm environment. In this paper, we compare the in vitro activities of two new semisynthetic glycopeptide antibiotics, MA79 and ERJ390, with two clinically used glycopeptide antibiotics-vancomycin and teicoplanin. The new antibiotics effectively killed not only exponentially growing cells of Staphylococcus aureus, but also cells in the stationary growth phase and biofilm.

15.
Org Biomol Chem ; 19(40): 8711-8721, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34586122

RESUMO

The polyanionic phosphodiester backbone of nucleic acids contributes to high nuclease sensitivity and low cellular uptake and is therefore a major obstacle to the biological application of native oligonucleotides. Backbone modifications, particularly charge alterations is a proven strategy to provide artificial oligonucleotides with improved properties. Here, we describe the synthesis of a new type of oligonucleotide analogues consisting of a morpholino and a ribo- or deoxyribonucleoside in which the 5'-amino group of the nucleoside unit provides the nitrogen of the morpholine ring. The synthetic protocol is compatible with trityl and dimethoxytrityl protecting groups and azido functionality, and was extended to the synthesis of higher oligomers. The chimeras are positively charged in aqueous medium, due to the N-alkylated tertiary amine structure of the morpholino unit.


Assuntos
Oligonucleotídeos
16.
Molecules ; 26(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498831

RESUMO

BACKGROUND: Cardioprotective effects of H2S are being suggested by numerous studies. Furthermore, H2S plays a role in relaxation of vascular smooth muscle, protects against oxidative stress, and modulates inflammation. Long-term high-dose use of NSAIDs, such as ibuprofen, have been associated with enhanced cardiovascular risk. The goal of the present work is the synthesis and basic pharmacological characterization of a newly designed H2S-releasing ibuprofen derivative. METHODS: Following the synthesis of EV-34, a new H2S-releasing derivative of ibuprofen, oxidative stability assays were performed (Fenton and porphyrin assays). Furthermore, stability of the molecule was studied in rat serum and liver lysates. H2S-releasing ability of the EC-34 was studied with a hydrogen sulfide sensor. MTT (3-(4,5-dimethylthiazol 2-yl)-2,5-(diphenyltetrazolium bromide)) assay was carried out to monitor the possible cytotoxic effect of the compound. Cyclooxygenase (COX) inhibitory property of EV-34 was also evaluated. Carrageenan assay was carried out to compare the anti-inflammatory effect of EV-34 to ibuprofen in rat paws. RESULTS: The results revealed that the molecule is stable under oxidative condition of Fenton reaction. However, EV-34 undergoes biodegradation in rat serum and liver lysates. In cell culture medium H2S is being released from EV-34. No cytotoxic effect was observed at concentrations of 10, 100, 500 µM. The COX-1 and COX-2 inhibitory effects of the molecule are comparable to those of ibuprofen. Furthermore, based on the carrageenan assay, EV-34 exhibits the same anti-inflammatory effect to that of equimolar amount of ibuprofen (100 mg/bwkg). CONCLUSION: The results indicate that EV-34 is a safe H2S releasing ibuprofen derivative bearing anti-inflammatory properties.


Assuntos
Sulfeto de Hidrogênio/química , Ibuprofeno/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Ibuprofeno/farmacologia , Inflamação/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Ratos Sprague-Dawley
17.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499349

RESUMO

For some time, glycopeptide antibiotics have been considered the last line of defense against Methicillin-resistant Staphylococcus aureus (MRSA). However, vancomycin resistance of Gram-positive bacteria is an increasingly emerging worldwide health problem. The mode of action of glycopeptide antibiotics is essentially the binding of peptidoglycan cell-wall fragments terminating in the d-Ala-d-Ala sequence to the carboxylate anion binding pocket of the antibiotic. Dimerization of these antibiotics in aqueous solution was shown to persist and even to enhance the antibacterial effect in a co-operative manner. Some works based on solid state (ss) Nuclear Magnetic Resonance (NMR) studies questioned the presence of dimers under the conditions of ssNMR while in a few cases, higher-order oligomers associated with contiguous back-to-back and face-to-face dimers were observed in the crystal phase. However, it is not proved if such oligomers persist in aqueous solutions. With the aid of 15N-labelled eremomycin using 15N relaxation and diffusion NMR methods, we observed tetramers and octamers when the N-Ac-d-Ala-d-Ala dipeptide was added. To the contrary, the N-Ac-d-Ala or (N-Ac)2-l-Lys-d-Ala-d-Ala tripeptide did not induce higher-order oligomers. These observations are interesting examples of tailored supramolecular self-organization. New antimicrobial tests have also been carried out with these self-assemblies against MRSA and VRE (resistant) strains.

18.
Org Biomol Chem ; 18(40): 8161-8178, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33020786

RESUMO

Nucleoside and nucleic acid analogues are known to possess a considerable therapeutic potential. In this work, by coupling cysteine to nucleosides, we successfully synthesized compounds that may not only have interesting biological properties in their monomeric form, but can be used beyond that, for oligomerization, in order to produce new types of synthetic nucleic acids. We elaborated different strategies for the synthesis of cysteinyl nucleosides as monomers of cysteinyl nucleic acids using nucleophilic substitution or thiol-ene coupling as a synthetic tool, and utilised on two complementary nucleosides, uridine and adenosine. Dipeptidyl dinucleosides and pentameric cysteinyl uridine were prepared from the monomeric building blocks, which are the first members of a new class of peptide nucleic acids containing the entire ribofuranosyl nucleoside units bound to the peptide backbone.


Assuntos
Nucleosídeos
19.
Pharmaceuticals (Basel) ; 13(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610683

RESUMO

Influenza A and B viruses are a global threat to human health and increasing resistance to the existing antiviral drugs necessitates new concepts to expand the therapeutic options. Glycopeptide derivatives have emerged as a promising new class of antiviral agents. To avoid potential antibiotic resistance, these antiviral glycopeptides are preferably devoid of antibiotic activity. We prepared six vancomycin aglycone hexapeptide derivatives with the aim of obtaining compounds having anti-influenza virus but no antibacterial activity. Two of them exerted strong and selective inhibition of influenza A and B virus replication, while antibacterial activity was successfully eliminated by removing the critical N-terminal moiety. In addition, these two molecules offered protection against several other viruses, such as herpes simplex virus, yellow fever virus, Zika virus, and human coronavirus, classifying these glycopeptides as broad antiviral molecules with a favorable therapeutic index.

20.
ChemMedChem ; 15(17): 1661-1671, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32652783

RESUMO

The limited scope of antiviral drugs and increasing problem of antiviral drug resistance represent a global health threat. Glycopeptide antibiotics and their lipophilic derivatives have emerged as relevant inhibitors of diverse viruses. Herein, we describe a new strategy for the synthesis of dual hydrophobic and lipophobic derivatives of glycopeptides to produce selective antiviral agents without membrane-disrupting activity. Perfluorobutyl and perfluorooctyl moieties were attached through linkers of different length to azido derivatives of vancomycin aglycone and teicoplanin pseudoaglycone, and the new derivatives were evaluated against a diverse panel of viruses. The teicoplanin derivatives displayed strong anti-influenza virus activity at nontoxic concentrations. Some of the perfluoroalkylated glycopeptides were also active against a few other viruses such as herpes simplex virus or coronavirus. These data encourage further exploration of glycopeptide analogues for broad antiviral application.


Assuntos
Antivirais/síntese química , Fluorocarbonos/química , Teicoplanina/química , Vancomicina/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antivirais/química , Antivirais/farmacologia , Bacillus subtilis/efeitos dos fármacos , Catálise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Coronavirus/efeitos dos fármacos , Cães , Humanos , Testes de Sensibilidade Microbiana , Paládio/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Zika virus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...