Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
JCO Precis Oncol ; 7: e2300338, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38039432

RESUMO

PURPOSE: Homologous recombination deficiency (HRD) is highly prevalent in triple-negative breast cancer (TNBC) and associated with response to PARP inhibition (PARPi). Here, we studied the prevalence of HRD in non-TNBC to assess the potential for PARPi in a wider group of patients with breast cancer. METHODS: HRD status was established using targeted gene panel sequencing (360 genes) and BRCA1 methylation analysis of pretreatment biopsies from 201 patients with primary breast cancer in the phase II PETREMAC trial (ClinicalTrials.gov identifier: NCT02624973). HRD was defined as mutations in BRCA1, BRCA2, BRIP1, BARD1, or PALB2 and/or promoter methylation of BRCA1 (strict definition; HRD-S). In secondary analyses, a wider definition (HRD-W) was used, examining mutations in 20 additional genes. Furthermore, tumor BRCAness (multiplex ligation-dependent probe amplification), PAM50 subtyping, RAD51 nuclear foci to test functional HRD, tumor-infiltrating lymphocyte (TIL), and PD-L1 analyses were performed. RESULTS: HRD-S was present in 5% of non-TNBC cases (n = 9 of 169), contrasting 47% of the TNBC tumors (n = 15 of 32). HRD-W was observed in 23% of non-TNBC (n = 39 of 169) and 59% of TNBC cases (n = 19 of 32). Of 58 non-TNBC and 30 TNBC biopsies examined for RAD51 foci, 4 of 4 (100%) non-TNBC and 13 of 14 (93%) TNBC cases classified as HRD-S had RAD51 low scores. In contrast, 4 of 17 (24%) non-TNBC and 15 of 19 (79%) TNBC biopsies classified as HRD-W exhibited RAD51 low scores. Of nine non-TNBC tumors with HRD-S status, only one had a basal-like PAM50 signature. There was a high concordance between HRD-S and either BRCAness, high TIL density, or high PD-L1 expression (each P < .001). CONCLUSION: The prevalence of HRD in non-TNBC suggests that therapy targeting HRD should be evaluated in a wider breast cancer patient population. Strict HRD criteria should be implemented to increase diagnostic precision with respect to functional HRD.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Antígeno B7-H1/genética , Genes BRCA2 , Mutação , Recombinação Homóloga/genética
2.
EMBO Mol Med ; 15(12): e18459, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37937685

RESUMO

Triple-negative breast cancer (TNBC) often develops resistance to single-agent treatment, which can be circumvented using targeted combinatorial approaches. Here, we demonstrate that the simultaneous inhibition of LOXL2 and BRD4 synergistically limits TNBC proliferation in vitro and in vivo. Mechanistically, LOXL2 interacts in the nucleus with the short isoform of BRD4 (BRD4S), MED1, and the cell cycle transcriptional regulator B-MyB. These interactions sustain the formation of BRD4 and MED1 nuclear transcriptional foci and control cell cycle progression at the gene expression level. The pharmacological co-inhibition of LOXL2 and BRD4 reduces BRD4 nuclear foci, BRD4-MED1 colocalization, and the transcription of cell cycle genes, thus suppressing TNBC cell proliferation. Targeting the interaction between BRD4S and LOXL2 could be a starting point for the development of new anticancer strategies for the treatment of TNBC.


Assuntos
Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Humanos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Proteínas que Contêm Bromodomínio , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Animais
3.
J Pathol Clin Res ; 9(6): 442-448, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37504067

RESUMO

The RAD51 test is emerging as a promising biomarker for the assessment of functional homologous recombination deficiency (HRD). Yet, the robustness and reproducibility of the immunofluorescence-based RAD51 test, in different academic laboratories, have not been systematically investigated. Therefore, we tested the performance of the RAD51 assay in formalin-fixed paraffin-embedded (FFPE) high-grade serous ovarian carcinoma (HGSOC) samples in four European laboratories. Here, we confirm that subtle differences in staining procedures result in low variability of RAD51 and γH2AX scores. However, substantial variability in RAD51 scoring was observed in some samples, likely due to complicating technical and biological features, such as high RAD51 signal-to-noise ratio and RAD51 heterogeneity. These results support the need to identify and perform additional quality control steps and/or automating image analysis. Altogether, resolving technical issues should be a priority, as identifying tumours with functional HRD is urgently needed to guide the individual treatment of HGSOC patients. Follow-up studies are needed to define the key tissue quality requirements to assess HRD by RAD51 in FFPE tumour samples, as this test could help in guiding the individual treatment of HGSOC patients.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Recombinação Homóloga , Biomarcadores Tumorais/genética , Rad51 Recombinase/genética
5.
Cancer Cell ; 41(5): 986-1002.e9, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37116492

RESUMO

Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer (IBC). Due to a lack of biomarkers able to distinguish high- from low-risk cases, DCIS is treated similar to early IBC even though the minority of untreated cases eventually become invasive. Here, we characterized 115 patient-derived mouse-intraductal (MIND) DCIS models reflecting the full spectrum of DCIS observed in patients. Utilizing the possibility to follow the natural progression of DCIS combined with omics and imaging data, we reveal multiple prognostic factors for high-risk DCIS including high grade, HER2 amplification, expansive 3D growth, and high burden of copy number aberrations. In addition, sequential transplantation of xenografts showed minimal phenotypic and genotypic changes over time, indicating that invasive behavior is an intrinsic phenotype of DCIS and supporting a multiclonal evolution model. Moreover, this study provides a collection of 19 distributable DCIS-MIND models spanning all molecular subtypes.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Humanos , Animais , Camundongos , Feminino , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Bancos de Espécimes Biológicos , Xenoenxertos , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fatores de Risco , Progressão da Doença
6.
Clin Cancer Res ; 29(13): 2466-2479, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37097615

RESUMO

PURPOSE: To determine the ability of RAD51 foci to predict platinum chemotherapy response in high-grade serous ovarian cancer (HGSOC) patient-derived samples. EXPERIMENTAL DESIGN: RAD51 and γH2AX nuclear foci were evaluated by immunofluorescence in HGSOC patient-derived cell lines (n = 5), organoids (n = 11), and formalin-fixed, paraffin-embedded tumor samples (discovery n = 31, validation n = 148). Samples were defined as RAD51-High if >10% of geminin-positive cells had ≥5 RAD51 foci. Associations between RAD51 scores, platinum chemotherapy response, and survival were evaluated. RESULTS: RAD51 scores correlated with in vitro response to platinum chemotherapy in established and primary ovarian cancer cell lines (Pearson r = 0.96, P = 0.01). Organoids from platinum-nonresponsive tumors had significantly higher RAD51 scores than those from platinum-responsive tumors (P < 0.001). In a discovery cohort, RAD51-Low tumors were more likely to have a pathologic complete response (RR, 5.28; P < 0.001) and to be platinum-sensitive (RR, ∞; P = 0.05). The RAD51 score was predictive of chemotherapy response score [AUC, 0.90; 95% confidence interval (CI), 0.78-1.0; P < 0.001). A novel automatic quantification system accurately reflected the manual assay (92%). In a validation cohort, RAD51-Low tumors were more likely to be platinum-sensitive (RR, ∞; P < 0.001) than RAD51-High tumors. Moreover, RAD51-Low status predicted platinum sensitivity with 100% positive predictive value and was associated with better progression-free (HR, 0.53; 95% CI, 0.33-0.85; P < 0.001) and overall survival (HR, 0.43; 95% CI, 0.25-0.75; P = 0.003) than RAD51-High status. CONCLUSIONS: RAD51 foci are a robust marker of platinum chemotherapy response and survival in ovarian cancer. The utility of RAD51 foci as a predictive biomarker for HGSOC should be tested in clinical trials.


Assuntos
Neoplasias Ovarianas , Platina , Humanos , Feminino , Platina/uso terapêutico , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Biomarcadores Tumorais/uso terapêutico
7.
Gynecol Oncol ; 171: 106-113, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868112

RESUMO

RATIONALE: Homologous recombination deficiency (HRD), defined as BRCA1/2 mutation (BRCAmut) or high genomic instability, is used to identify ovarian cancer (OC) patients most likely to benefit from PARP inhibitors. While these tests are useful, they are imperfect. Another approach is to measure the capacity of tumor cells to form RAD51 foci in the presence of DNA damage using an immunofluorescence assay (IF). We aimed to describe for the first time this assay in OC and correlate it to platinum response and BRCAmut. METHODS: Tumor samples were prospectively collected from the randomized CHIVA trial of neoadjuvant platinum +/- nintedanib. IF for RAD51, GMN and gH2AX was performed on FFPE blocks. Tumors were considered RAD51-low if ≤10% of GMN-positive tumor cells had ≥5 RAD51 foci. BRCAmut were identified by NGS. RESULTS: 155 samples were available. RAD51 assay was contributive for 92% of samples and NGS available for 77%. gH2AX foci confirmed the presence of significant basal DNA damage. 54% of samples were considered HRD by RAD51 and presented higher overall response rates to neoadjuvant platinum (P = 0.04) and longer progression-free survival (P = 0.02). In addition, 67% of BRCAmut were HRD by RAD51. Among BRCAmut, RAD51-high tumors seem to harbor poorer response to chemotherapy (P = 0.02). CONCLUSIONS: We evaluated a functional assay of HR competency. OC demonstrate high levels of DNA damage, yet 54% fail to form RAD51 foci. These RAD51-low OC tend to be more sensitive to neoadjuvant platinum. The RAD51 assay also identified a subset of RAD51-high BRCAmut tumors with unexpected poor platinum response.


Assuntos
Neoplasias Ovarianas , Platina , Humanos , Feminino , Platina/uso terapêutico , Recombinação Homóloga , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Dano ao DNA , Proteína BRCA1/genética , Rad51 Recombinase/genética
8.
Clin Cancer Res ; 28(20): 4536-4550, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35921524

RESUMO

PURPOSE: PARP inhibitors (PARPi) induce synthetic lethality in homologous recombination repair (HRR)-deficient tumors and are used to treat breast, ovarian, pancreatic, and prostate cancers. Multiple PARPi resistance mechanisms exist, most resulting in restoration of HRR and protection of stalled replication forks. ATR inhibition was highlighted as a unique approach to reverse both aspects of resistance. Recently, however, a PARPi/WEE1 inhibitor (WEE1i) combination demonstrated enhanced antitumor activity associated with the induction of replication stress, suggesting another approach to tackling PARPi resistance. EXPERIMENTAL DESIGN: We analyzed breast and ovarian patient-derived xenoimplant models resistant to PARPi to quantify WEE1i and ATR inhibitor (ATRi) responses as single agents and in combination with PARPi. Biomarker analysis was conducted at the genetic and protein level. Metabolite analysis by mass spectrometry and nucleoside rescue experiments ex vivo were also conducted in patient-derived models. RESULTS: Although WEE1i response was linked to markers of replication stress, including STK11/RB1 and phospho-RPA, ATRi response associated with ATM mutation. When combined with olaparib, WEE1i could be differentiated from the ATRi/olaparib combination, providing distinct therapeutic strategies to overcome PARPi resistance by targeting the replication stress response. Mechanistically, WEE1i sensitivity was associated with shortage of the dNTP pool and a concomitant increase in replication stress. CONCLUSIONS: Targeting the replication stress response is a valid therapeutic option to overcome PARPi resistance including tumors without an underlying HRR deficiency. These preclinical insights are now being tested in several clinical trials where the PARPi is administered with either the WEE1i or the ATRi.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA1/genética , Biomarcadores , Carcinoma Epitelial do Ovário/tratamento farmacológico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Nucleosídeos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
9.
Cancer Res ; 82(8): 1646-1657, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35425960

RESUMO

PARP inhibitors (PARPi) are approved drugs for platinum-sensitive, high-grade serous ovarian cancer (HGSOC) and for breast, prostate, and pancreatic cancers (PaC) harboring genetic alterations impairing homologous recombination repair (HRR). Detection of nuclear RAD51 foci in tumor cells is a marker of HRR functionality, and we previously established a test to detect RAD51 nuclear foci. Here, we aimed to validate the RAD51 score cut off and compare the performance of this test to other HRR deficiency (HRD) detection methods. Laboratory models from BRCA1/BRCA2-associated breast cancer, HGSOC, and PaC were developed and evaluated for their response to PARPi and cisplatin. HRD in these models and patient samples was evaluated by DNA sequencing of HRR genes, genomic HRD tests, and RAD51 foci detection. We established patient-derived xenograft models from breast cancer (n = 103), HGSOC (n = 4), and PaC (n = 2) that recapitulated patient HRD status and treatment response. The RAD51 test showed higher accuracy than HRR gene mutations and genomic HRD analysis for predicting PARPi response (95%, 67%, and 71%, respectively). RAD51 detection captured dynamic changes in HRR status upon acquisition of PARPi resistance. The accuracy of the RAD51 test was similar to HRR gene mutations for predicting platinum response. The predefined RAD51 score cut off was validated, and the high predictive value of the RAD51 test in preclinical models was confirmed. These results collectively support pursuing clinical assessment of the RAD51 test in patient samples from randomized trials testing PARPi or platinum-based therapies. SIGNIFICANCE: This work demonstrates the high accuracy of a histopathology-based test based on the detection of RAD51 nuclear foci in predicting response to PARPi and cisplatin.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Epitelial do Ovário/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Feminino , Recombinação Homóloga/genética , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Rad51 Recombinase/genética
10.
Mol Biol Evol ; 36(4): 650-662, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590541

RESUMO

The modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA. This substrate expansion significantly influenced the evolution of eukaryotic genomes in terms of codon usage and tRNA gene composition. However, the selective advantages driving this process remain unclear. Here, we have studied the evolution of I34, tRNA adenosine deaminase A, adenosine deaminase acting on tRNA, and their relevant codons in a large set of bacterial and eukaryotic species. We show that a functional expansion of I34 to tRNAs other than tRNAArg also occurred within bacteria, in a process likely initiated by the emergence of unmodified A34-containing tRNAs. In eukaryotes, we report on a large variability in the use of I34 in protists, in contrast to a more uniform presence in fungi, plans, and animals. Our data support that the eukaryotic expansion of I34-tRNAs was driven by the improvement brought by these tRNAs to the synthesis of proteins highly enriched in certain amino acids.


Assuntos
Evolução Molecular , Inosina , RNA de Transferência/genética , Animais , Oenococcus/genética , Filogenia , Proteoma , Tetrahymena thermophila/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...