Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 127(12): e2022JE007523, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37033152

RESUMO

Wind speeds measured by the Mars 2020 Perseverance rover in Jezero crater were fitted as a Weibull distribution. InSight wind data acquired in Elysium Planitia were also used to contextualize observations. Jezero winds were found to be much calmer on average than in previous landing sites, despite the intense aeolian activity observed. However, a great influence of turbulence and wave activity was observed in the wind speed variations, thus driving the probability of reaching the highest wind speeds at Jezero, instead of sustained winds driven by local, regional, or large-scale circulation. The power spectral density of wind speed fluctuations follows a power-law, whose slope deviates depending on the time of day from that predicted considering homogeneous and isotropic turbulence. Daytime wave activity is related to convection cells and smaller eddies in the boundary layer, advected over the crater. The signature of convection cells was also found during dust storm conditions, when prevailing winds were consistent with a tidal drive. Nighttime fluctuations were also intense, suggesting strong mechanical turbulence. Convective vortices were usually involved in rapid wind fluctuations and extreme winds, with variations peaking at 9.2 times the background winds. Transient high wind events by vortex-passages, turbulence, and wave activity could be driving aeolian activity at Jezero. We report the detection of a strong dust cloud of 0.75-1.5 km in length passing over the rover. The observed aeolian activity had major implications for instrumentation, with the wind sensor suffering damage throughout the mission, probably due to flying debris advected by winds.

2.
Space Sci Rev ; 217(2): 29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33678912

RESUMO

The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm ( 25.5 ∘ × 19.1 ∘ FOV ) to 110 mm ( 6.2 ∘ × 4.2 ∘ FOV ) and will acquire data at pixel scales of 148-540 µm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover's mast with a stereo baseline of 24.3 ± 0.1  cm and a toe-in angle of 1.17 ± 0.03 ∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600 × 1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors' Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26 t h and May 9 t h , 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be < 10 % . Image quality, measured via the amplitude of the Modulation Transfer Function (MTF) at Nyquist sampling (0.35 line pairs per pixel), shows MTF Nyquist = 0.26 - 0.50 across all zoom, focus, and filter positions, exceeding the > 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11214-021-00795-x.

3.
Space Sci Rev ; 217(1): 24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33612866

RESUMO

Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 µrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 µrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.

4.
Science ; 356(6341)2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28572336

RESUMO

In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized.


Assuntos
Sedimentos Geológicos/química , Lagos , Marte , Oxirredução
5.
Science ; 353(6294): 55-8, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27365444

RESUMO

Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter- to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

6.
Science ; 343(6169): 1248097, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24458648

RESUMO

Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Marte , Água , Bactérias , Sedimentos Geológicos , Concentração de Íons de Hidrogênio , Silicatos/análise , Silicatos/química , Astronave , Sulfatos/química
7.
Science ; 343(6169): 1242777, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324272

RESUMO

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Marte , Água , Baías , Carbono/análise , Sedimentos Geológicos/análise , Sedimentos Geológicos/classificação , Hidrogênio/análise , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/química , Nitrogênio/análise , Oxirredução , Oxigênio/análise , Fósforo/análise , Salinidade , Enxofre/análise , Enxofre/química
8.
Science ; 343(6169): 1244734, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324274

RESUMO

Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/química , Marte , Baías , Sulfato de Cálcio/análise , Sulfato de Cálcio/química , Cloro/análise , Cloro/química , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/química , Halogênios/análise , Halogênios/química , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/química , Magnésio/análise , Magnésio/química , Silicatos/análise , Silicatos/química , Água/química
9.
Science ; 343(6169): 1245267, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324276

RESUMO

H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Hidrocarbonetos Clorados/análise , Marte , Compostos Orgânicos Voláteis/análise , Baías , Dióxido de Carbono/análise , Dióxido de Carbono/química , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Oxigênio/análise , Oxigênio/química , Sulfetos/análise , Sulfetos/química , Água/análise , Água/química
10.
Science ; 341(6153): 1238670, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072924

RESUMO

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

11.
Science ; 340(6136): 1068-72, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23723230

RESUMO

Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

12.
Science ; 336(6081): 570-6, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22556248

RESUMO

The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.


Assuntos
Marte , Água , Sulfato de Cálcio , Meio Ambiente Extraterreno , Fenômenos Geológicos , Meteoroides , Silicatos , Astronave , Zinco
13.
Science ; 331(6017): 575-8, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21292976

RESUMO

Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO(2) seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.


Assuntos
Dióxido de Carbono , Marte , Gelo-Seco , Meio Ambiente Extraterreno
14.
Nature ; 465(7297): 446-9, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20505721

RESUMO

The polar layered deposits of Mars contain the planet's largest known reservoir of water ice and the prospect of revealing a detailed Martian palaeoclimate record, but the mechanisms responsible for the formation of the dominant features of the north polar layered deposits (NPLD) are unclear, despite decades of debate. Stratigraphic analyses of the exposed portions of Chasma Boreale-a large canyon 500 km long, up to 100 km wide, and nearly 2 km deep-have led most researchers to favour an erosional process for its formation following initial NPLD accumulation. Candidate mechanisms include the catastrophic outburst of water, protracted basal melting, erosional undercutting, aeolian downcutting and a combination of these processes. Here we use new data from the Mars Reconnaissance Orbiter to show that Chasma Boreale is instead a long-lived, complex feature resulting primarily from non-uniform accumulation of the NPLD. The initial valley that later became Chasma Boreale was matched by a second, equally large valley that was completely filled in by subsequent deposition, leaving no evidence on the surface to indicate its former presence. We further demonstrate that topography existing before the NPLD began accumulating influenced successive episodes of deposition and erosion, resulting in most of the present-day topography. Long-term and large-scale patterns of mass balance achieved through sedimentary processes, rather than catastrophic events, ice flow or highly focused erosion, have produced the largest geomorphic anomaly in the north polar ice of Mars.

15.
Science ; 324(5930): 1058-61, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19461001

RESUMO

The Mars rover Opportunity has explored Victoria crater, an approximately 750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those approximately 6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.


Assuntos
Marte , Meio Ambiente Extraterreno , Compostos Férricos , Astronave , Água
16.
Science ; 317(5845): 1706-9, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17885125

RESUMO

Water has supposedly marked the surface of Mars and produced characteristic landforms. To understand the history of water on Mars, we take a close look at key locations with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter, reaching fine spatial scales of 25 to 32 centimeters per pixel. Boulders ranging up to approximately 2 meters in diameter are ubiquitous in the middle to high latitudes, which include deposits previously interpreted as finegrained ocean sediments or dusty snow. Bright gully deposits identify six locations with very recent activity, but these lie on steep (20 degrees to 35 degrees) slopes where dry mass wasting could occur. Thus, we cannot confirm the reality of ancient oceans or water in active gullies but do see evidence of fluvial modification of geologically recent mid-latitude gullies and equatorial impact craters.


Assuntos
Marte , Água , Meio Ambiente Extraterreno , Fenômenos Geológicos , Geologia
17.
Science ; 317(5845): 1711-5, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17885127

RESUMO

Mars' north pole is covered by a dome of layered ice deposits. Detailed ( approximately 30 centimeters per pixel) images of this region were obtained with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter (MRO). Planum Boreum basal unit scarps reveal cross-bedding and show evidence for recent mass wasting, flow, and debris accumulation. The north polar layers themselves are as thin as 10 centimeters but appear to be covered by a dusty veneer in places, which may obscure thinner layers. Repetition of particular layer types implies that quasi-periodic climate changes influenced the stratigraphic sequence in the polar layered deposits, informing models for recent climate variations on Mars.


Assuntos
Marte , Meio Ambiente Extraterreno , Gelo
18.
Science ; 313(5792): 1403-7, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16959999

RESUMO

The Mars Exploration Rover Opportunity has spent more than 2 years exploring Meridiani Planum, traveling approximately 8 kilometers and detecting features that reveal ancient environmental conditions. These include well-developed festoon (trough) cross-lamination formed in flowing liquid water, strata with smaller and more abundant hematite-rich concretions than those seen previously, possible relict "hopper crystals" that might reflect the formation of halite, thick weathering rinds on rock surfaces, resistant fracture fills, and networks of polygonal fractures likely caused by dehydration of sulfate salts. Chemical variations with depth show that the siliciclastic fraction of outcrop rock has undergone substantial chemical alteration from a precursor basaltic composition. Observations from microscopic to orbital scales indicate that ancient Meridiani once had abundant acidic groundwater, arid and oxidizing surface conditions, and occasional liquid flow on the surface.


Assuntos
Marte , Ácidos , Meio Ambiente Extraterreno , Compostos Férricos , Sedimentos Geológicos , Minerais , Silicatos , Astronave , Sulfatos , Tempo , Água
19.
Nature ; 443(7107): E1-2; discussion E2, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957684

RESUMO

The Mars Exploration Rover Opportunity discovered sulphate-rich sedimentary rocks at Meridiani Planum on Mars, which are interpreted by McCollom and Hynek as altered volcanic rocks. However, their conclusions are derived from an incorrect representation of our depositional model, which is upheld by more recent Rover data. We contend that all the available data still support an aeolian and aqueous sedimentary origin for Meridiani bedrock.

20.
Nature ; 436(7047): 58-61, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16001061

RESUMO

The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...