Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(1): pgad362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213613

RESUMO

Air quality regulations have led to decreased nitrogen (N) and sulfur deposition across the conterminous United States (CONUS) during the last several decades, particularly in the eastern parts. But it is unclear if declining deposition has altered stream N at large scales. We compared watershed N inputs with N chemistry from over 2,000 CONUS streams where deposition was the largest N input to the watershed. Weighted change analysis showed that deposition declined across most watersheds, especially in the Eastern CONUS. Nationally, declining N deposition was not associated with significant large-scale declines in stream nitrate concentration. Instead, significant increases in stream dissolved organic carbon (DOC) and total organic N (TON) were widespread across regions. Possible mechanisms behind these increases include declines in acidity and/or ionic strength drivers, changes in carbon availability, and/or climate variables. Our results also reveal a declining trend of DOC/TON ratio over the entire study period, primarily influenced by the trend in the Eastern region, suggesting the rate of increase in stream TON exceeded the rate of increase in DOC concentration during this period. Our results illustrate the complexity of nutrient cycling that links long-term atmospheric deposition to water quality. More research is needed to understand how increased dissolved organic N could affect aquatic ecosystems and downstream riverine nutrient export.

2.
Knowl Manag Aquat Ecosyst ; 424(19): 1-16, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37593206

RESUMO

Both native and non-native taxa richness patterns are useful for evaluating areas of greatest conservation concern. To determine those patterns, we analyzed fish and macroinvertebrate taxa richness data obtained at 3475 sites collected by the USEPA's National Rivers and Streams Assessment. We also determined which natural and anthropogenic variables best explained patterns in regional richness. Macroinvertebrate and fish richness increased with the number of sites sampled per region. Therefore, we determined residual taxa richness from the deviation of observed richness from predicted richness given the number of sites per region. Regional richness markedly exceeded average site richness for both macroinvertebrates and fish. Predictors of macroinvertebrate-genus and fish-species residual-regional richness differed. Air temperature was an important predictor in both cases but was positive for fish and negative for macroinvertebrates. Both natural and land use variables were significant predictors of regional richness. This study is the first to determine mean site and regional richness of both fish and aquatic macroinvertebrates across the conterminous USA, and the key anthropogenic drivers of regional richness. Thus, it offers important insights into regional USA biodiversity hotspots.

3.
Wetlands (Wilmington) ; 43: 1-19, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38269080

RESUMO

Anthropogenic impacts on lake and stream water quality are well established but have been much less studied in wetlands. Here we use data from the 2016 National Wetland Condition Assessment to characterize water quality and its relationship to anthropogenic pressure for inland wetlands across the conterminous USA. Water samples obtained from 525 inland wetlands spanned pH from <4 to >9 and 3 to 5 orders of magnitude in ionic strength (chloride, sulfate, conductivity), nutrients (total N and P), turbidity, planktonic chlorophyll, and dissolved organic carbon (DOC). Anthropogenic pressure levels were evaluated at two spatial scales - an adjacent scale scored from field checklists, and a catchment scale indicated by percent agricultural plus urban landcover. Pressure at the two spatial scales were uncorrelated and varied considerably across regions and wetland hydrogeomorphic types. Both adjacent- and catchment-scale pressure were associated with elevated ionic-strength metrics; chloride elevation was most evident in road-salt using states, and sulfate was strongly elevated in a few sites with coal mining nearby. Nutrients were elevated in association with catchment-scale pressure but concomitant changes were not seen in planktonic chlorophyll. Acidic pH and high DOC occurred primarily in upper Great Lakes and eastern seaboard sites having low anthropogenic pressure, suggesting natural organic acid sources. Ionic strength and nutrients increased with increasing catchment-scale pressure even in Flats and closed Depression and Lacustrine sites, which indicates connectivity to rather than isolation from upland anthropogenic landuse even for wetlands lacking inflowing streams.

4.
Ecol Indic ; 141: 1-13, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36003067

RESUMO

Taxonomic inconsistency in species-level identifications has constrained use of diatoms as biological indicators in aquatic assessments. We addressed this problem by developing diatom multimetric indices (MMIs) of ecological condition using genus-level taxonomy and trait-based autecological information. The MMIs were designed to assess river and stream chemical, physical and biological condition across the conterminous United States. Trait-based approaches have the advantage of using both species-level and genus-level data, which require less effort and expense to acquire than traditional species-based approaches and eliminate the persistent taxonomic biases introduced over vast geographic extents. For large-extent assessment programs that require multiple taxonomic laboratories to process samples, such as the United States Environmental Protection Agency's (U.S. EPA's) National Rivers and Streams Assessment (NRSA), the trait approach can eliminate discrepancies in species-level identification or nomenclature that hinder diatom data interpretation. We developed trait-based MMIs using NRSA data for each of the three large ecoregions across the U.S. - the East, Plains, and West. All three MMIs performed well in discriminating least-disturbed from most-disturbed sites. The MMI for the East had the greatest discrimination ability, followed by MMIs for the Plains and West, respectively. The performance of the MMIs was comparable to that observed in existing NRSA fish and macroinvertebrate MMIs. Our research shows that trait-based diatom indices constructed on genus-level taxonomy can be effective for large-scale assessments, and may also allow programs such as NRSA to assess trends in freshwater condition retrospectively, by revisiting older diatom datasets. Moreover, our genus-based approach facilitates including of diatoms into other assessment programs that have limited monitoring resources.

5.
Environ Sci Technol ; 55(12): 7890-7899, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34060819

RESUMO

To understand the environmental and anthropogenic drivers of stream nitrogen (N) concentrations across the conterminous US, we combined summer low-flow data from 4997 streams with watershed information across three survey periods (2000-2014) of the US EPA's National Rivers and Streams Assessment. Watershed N inputs explained 51% of the variation in log-transformed stream total N (TN) concentrations. Both N source and input rates influenced stream NO3/TN ratios and N concentrations. Streams dominated by oxidized N forms (NO3/TN ratio > 0.50) were more strongly responsive to the N input rate compared to streams dominated by other N forms. NO3 proportional contribution increased with N inputs, supporting N saturation-enhanced NO3 export to aquatic ecosystems. By combining information about N inputs with climatic and landscape factors, random forest models of stream N concentrations explained 70, 58, and 60% of the spatial variation in stream concentrations of TN, dissolved inorganic N, and total organic N, respectively. The strength and direction of relationships between watershed drivers and stream N concentrations and forms varied with N input intensity. Model results for high N input watersheds not only indicated potential contributions from contaminated groundwater to high stream N concentrations but also the mitigating role of wetlands.


Assuntos
Água Subterrânea , Rios , Ecossistema , Monitoramento Ambiental , Nitrogênio/análise , Estações do Ano
6.
Limnologica ; 87: 125859, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34017150

RESUMO

Fish species richness is an indicator of river ecological condition but it is particularly difficult to estimate in large unwadeable rapidly flowing rivers. Intensive multi-gear sampling is time consuming, logistically complex and expensive. However, insufficient sampling effort underestimates species richness and yields inaccurate data about the ecological condition of river sites. We raft-electrofished 10 river sites in 10 different ecoregions and six western USA states for distances equal to 300 times their mean wetted channel widths (MCWs) to estimate the effort needed to approach asymptotes in fish species richness. To collect 90% of the observed fish species at the sites, we found that an average of 150 MCWs (ranging 80-210 MCWs) were needed, with the number of MCWs increasing in rivers with a higher proportion of spatially rare species. Frequently, the second or third additional 100 MCWs produced only one or two additional singletons or doubletons (species occurring only once or twice at a site). Before initiating sampling programs for adequately estimating species richness, we recommend assessing sampling effort, particularly if rare or uncommon species are expected or desired.

7.
Ecol Indic ; 1222021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33897301

RESUMO

Lakes face multiple anthropogenic pressures that can substantially alter their hydrology. Dams and land use in the watershed (e.g., irrigated agriculture) can modify lake water regimes beyond natural ranges, and changing climate may exacerbate anthropogenic stresses on lake hydrology. However, we lack cost-effective indicators to quantify anthropogenic hydrologic alteration potential in lakes at regional and national extents. We developed a framework to rank lakes by the potential for dams and land use to alter lake hydrology (HydrAP) that can be applied at a national scale. The HydrAP framework principles are that 1) dams are primary drivers of lake hydro-alteration, 2) land use activities are secondary drivers that alter watershed hydrology, and 3) topographic relief limits where land use and dams are located on the landscape. We ranked lakes in the United States Environmental Protection Agency National Lakes Assessment (NLA) on a HydrAP scale from zero to seven, where a zero indicates lakes with no potential for anthropogenic hydro-alteration, and a seven indicates large dams and/or intensive land use with high potential to alter lake hydrology. We inferred HydrAP population distributions in the conterminous US (CONUS) using the NLA probabilistic weights. Half of CONUS lakes had moderate to high hydro-alteration potential (HydrAP ranks 3-7), the other half had minimal to no hydro-alteration potential (HydrAP ranks 0-2). HydrAP ranks generally corresponded with natural and man-made lake classes, but >15% of natural lakes had moderate to high HydrAP ranks and ~10% of man-made lakes had low HydrAP ranks. The Great Plains, Appalachians, and Coastal Plains had the largest percentages (>50%) of high HydrAP lakes, and the West and Midwest had the lowest percentages (~30%). Water residence time (τ) and water-level change were associated with HydrAP ranks, demonstrating the framework's intended ability to differentiate anthropogenic stressors that can alter lake hydrology. Consistently across ecoregions high HydrAP lakes had shorter τ. But HydrAP relationships with water-level change varied by ecoregion. In the West and Appalachians, high HydrAP lakes experienced excessive water-level declines compared to low-ranked lakes. In contrast, high HydrAP lakes in the Great Plains and Midwest showed stable water levels compared to low-ranked lakes. These differences imply that water management in western and eastern mountainous regions may result in large water-level fluctuations, but water management in central CONUS may promote water-level stabilization. The HydrAP framework using accessible, national datasets can support large-scale lake assessments and be adapted to specific locations where data are available.

8.
J Am Water Resour Assoc ; 56(3): 450-471, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32699495

RESUMO

Establishing baseline hydrologic characteristics for lakes in the U.S. is critical to evaluate changes to lake hydrology. We used the U.S. EPA National Lakes Assessment 2007 and 2012 surveys to assess hydrologic characteristics of a population of ~45,000 lakes in the conterminous U.S. based on probability samples of ~1,000 lakes/yr distributed across nine ecoregions. Lake hydrologic study variables include water-level drawdown (i.e., vertical decline and horizontal littoral exposure) and two water stable isotope-derived parameters: evaporation-to-inflow (E:I) and water residence time. We present 1) national and regional distributions of the study variables for both natural and man-made lakes and 2) differences in these characteristics between 2007 and 2012. In 2007, 59% of the population of U.S. lakes had Greater than normal or Excessive drawdown relative to water levels in ecoregional reference lakes with minimal human disturbances; while in 2012, only 20% of lakes were significantly drawn down beyond normal ranges. Water isotope-derived variables did not differ significantly between survey years in contrast to drawdown. Median E:I was 20% indicating that flow-through processes dominated lake water regimes. For 75% of U.S. lakes, water residence time was < 1 year and was longer in natural vs. man-made lakes. Our study provides baseline ranges to assess local and regional lake hydrologic status and inform management decisions in changing environmental conditions.

9.
Ecol Indic ; 1122020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33628123

RESUMO

National and regional ecological assessments are essential for making rational decisions concerning water body conservation and management at those spatial extents. We analyzed data from 4597 samples collected from 3420 different sites across the conterminous USA during the U.S. Environmental Protection Agency's 2008-2009 and 2013-2014 National Rivers and Streams Assessment. We evaluated the relationship between both fish and macroinvertebrate multimetric index (MMI) condition scores and 38 environmental factors to assess the relative importance of natural versus anthropogenic predictors, contrast site-scale versus watershed-scale predictors, and examine ecoregional and assemblage differences. We found that most of the environmental factors we examined were related to either fish and/or macroinvertebrate MMI scores in some fashion and that the factors involved, and strength of the relationship, varied by ecoregion and between assemblages. Factors more associated with natural conditions were usually less important in explaining MMI scores than factors more directly associated with anthropogenic disturbances. Local site-scale factors explained more variation than watershed-scale factors. Random forest and multiple regression models performed similarly, and the fish MMI-environment relationships were stronger than macroinvertebrate MMI-environment relationships. Among ecoregions, the strongest environmental relationships were observed in the Northern Appalachians and the weakest in the Southern Plains. The fish and macroinvertebrate MMIs were only weakly correlated with each other, and they generally responded more strongly to different groups of variables. These results support the use of multiple assemblages and the sampling of multiple environmental indicators in ecological assessments across large spatial extents.

10.
Environ Monit Assess ; 191(Suppl 1): 320, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222378

RESUMO

We analyzed data from 967 randomly selected wetland sites across the conterminous United States (US) as part of the 2011 National Wetland Condition Assessment (NWCA) to investigate the relative and attributable risk of various stressors on wetland vegetation condition. Indicators of stress included six physical stressors (damming, ditching, filling/erosion, hardening, vegetation removal, and vegetation replacement) and two chemical stressors (soil phosphorus and heavy metals) that represent a wide range of human activities. Risk was evaluated nationally and within four aggregate ecoregions and four aggregate wetland types. Nationally, all of the stressors except soil heavy metals and phosphorus had a significant relative risk but values were always < 2 (a relative risk of two indicates that it's twice as likely to have poor vegetation condition when the stressor is present relative to when it is absent). Among the different ecoregions or wetland types, no one stressor was consistently riskier; all of the stressors were associated with poor vegetation condition in one or another of the subpopulations. Overall, hardening had the highest attributable and relative risks in the most different subpopulations. Attributable risks above 25% were observed for vegetation removal in the Coastal Plain, hardening and ditching in the West, and hardening in Estuarine Woody wetlands. Relative risks above 3 were noted for heavy metals and soil phosphorus in the Interior Plains, and vegetation removal, vegetation replacement, and damming in Estuarine Woody wetlands. Relative and attributable risk were added to the data analyses tools used in the NWCA to improve the ability of survey results to assist managers and policy makers in setting priorities based on conditions observed on the ground. These analyses provide useful information to both individual site managers and regional-national policy makers.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Áreas Alagadas , Biomarcadores Ambientais , Atividades Humanas , Humanos , Plantas , Medição de Risco , Solo , Poluentes do Solo/análise , Estados Unidos
11.
Environ Monit Assess ; 191(Suppl 1): 336, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222398

RESUMO

Soil concentrations of 12 heavy metals that have been linked to various anthropogenic activities were measured in samples collected from the uppermost horizon in approximately 1000 wetlands across the conterminous US as part of the 2011 National Wetland Condition Assessment (NWCA). The heavy metals were silver (Ag), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), antimony (Sb), tin (Sn), vanadium (V), tungsten (W), and zinc (Zn). Using thresholds to distinguish natural background concentrations from human-mediated additions, we evaluated wetland soil heavy metal concentrations in the conterminous US and four regions using a Heavy Metal Index (HMI) that reflects human-mediated heavy metal loads based on the number of elements above expected background concentration. We also examined the individual elements to detect concentrations of heavy metals above expected background that frequently occur in wetland soils. Our data show that wetland soils of the conterminous US typically have low heavy metal loads, and that most of the measured elements occur nationally in concentrations below thresholds that relate to anthropogenic activities. However, we found that soil lead is more common in wetland soils than other measured elements, occurring nationally in 11.3% of the wetland area in concentrations above expected natural background (> 35 ppm). Our data show positive relationships between soil lead concentration and four individual landscape metrics: road density, percent impervious surface, housing unit density, and population density in a 1-km radius buffer area surrounding a site. These relationships, while evident on a national level, are strongest in the eastern US, where the highest road densities and greatest population densities occur. Because lead can be strongly bound to wetland soils in particular, maintenance of the good condition of our nation's wetlands is likely to minimize risk of lead mobilization.


Assuntos
Monitoramento Ambiental/métodos , Atividades Humanas , Metais Pesados/análise , Poluentes do Solo/análise , Áreas Alagadas , Monitoramento Ambiental/estatística & dados numéricos , Atividades Humanas/classificação , Atividades Humanas/estatística & dados numéricos , Humanos , Fatores de Risco , Estados Unidos
12.
Environ Monit Assess ; 191(Suppl 1): 296, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222417

RESUMO

We analyzed data from 1138 wetland sites across the conterminous United States (US) as part of the 2011 National Wetland Condition Assessment (NWCA) to investigate the response of indicators of wetland quality to indicators of human disturbance at regional and continental scales. The strength and nature of these relationships in wetlands have rarely been examined over large regions, due to the paucity of large-scale datasets. Wetland response indicators were a multimetric index of vegetation condition (VMMI), percent relative cover of alien plant species, soil lead and phosphorus, and water column total nitrogen and total phosphorus. Site-level disturbance indices were generated from field observations of disturbance types within a circular 140-m radius area around the sample point. Summary indices were calculated representing disturbances for ditching, damming, filling/erosion, hardening, vegetation replacement, and vegetation removal. Landscape-level disturbance associated with agricultural and urban land cover, roads, and human population were based on GIS data layers quantified in 200, 500, and 1000-m circular buffers around each sample point. Among these three buffer sizes, the landscape disturbance indicators were highly correlated and had similar relationships with the response indictors. Consequently, only the 1000-m buffer data were used for subsequent analyses. Disturbance-response models built using only landscape- or only site-level disturbance variables generally explained a small portion of the variance in the response variables (R2 < 0.2), whereas models using both types of disturbance data were better at predicting wetland responses. The VMMI was the response variable with the strongest relationship to the disturbances assessed in the NWCA (national model R2 = 0.251). National multiple regression models for the soil and water chemistry and percent alien cover responses to disturbance indices were not significant. The generally low percentage of significant models and the wide variation in predictor variables suggests that stressor-response relationships vary considerably across the diversity of wetland types and landscape settings found across the conterminous US. Logistic regression modeling was more informative, resulting in significant national and regional models predicting site presence/absence of alien species and/or the concentration of lead in wetland soils above background.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Áreas Alagadas , Agricultura , Humanos , Espécies Introduzidas , Plantas , Solo/química , Estados Unidos , Urbanização
13.
Environ Monit Assess ; 191(Suppl 1): 324, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222443

RESUMO

In 2011, the U.S. Environmental Protection Agency conducted the National Wetland Condition Assessment (NWCA) as part of the National Aquatic Resource Survey (NARS) program to determine the condition of wetlands across the 48 contiguous states of the United States (US). Sites were selected using a generalized random tessellated stratified (GRTS) probability design. We quantified the types, extent, and magnitude of human activities as indicators of potential stress on a sample of 1138 wetland sites representing a target population of 251,546 km2 of wetlands in the US. We used field observations of the presence and proximity of more than 50 pre-determined types of human activity to define two types of indices that quantify human influences on wetlands. We grouped these observations into five types of human activity (classes) and summed them within and across these classes to define five metrics and an overall Human Disturbance Activity Index (HDAI). We calculated six Anthropogenic Stress Indices (ASIs) by summing human disturbance activity observations within stressor categories according to their expected effect on each of six aspects of wetland condition. Based on repeat-visit data, the precision of these metrics and indices was sufficient for regional and national assessments. Among the six categories of stress assessed nationally, the percentage of wetland area having ASI levels indicating high stress levels ranged from 10% due to filling/erosional activities to 27% due to vegetation removal activities. The proportion of wetland area with no signs of human disturbance activity (HDAI = 0) within a 140-m diameter area varied widely among the different wetland ecoregions/types we assessed. No visible human disturbance activity was evident in 70% of estuarine wetlands, but among non-estuarine wetlands, only 8% of the wetland area in the West, 15% of the Interior Plains, 22% of the Coastal Plains, and 36% of the Eastern Mountains and Upper Midwest lacked visible evidence of disturbance. The woody wetlands of the West were the most highly stressed reporting group, with more than 75% of their wetland area subject to high levels of ditching, hardening, and vegetation removal. The NWCA offers a unique opportunity to quantify the type, intensity, and extent of human activities in and around wetlands and to assess their likely stress on wetland ecological functions, physical integrity, and overall condition at regional and continental scales.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Atividades Humanas/estatística & dados numéricos , United States Environmental Protection Agency/estatística & dados numéricos , Áreas Alagadas , Coleta de Dados , Meio Ambiente , Atividades Humanas/classificação , Humanos , Desenvolvimento Vegetal , Fatores de Risco , Estados Unidos , United States Environmental Protection Agency/organização & administração
14.
Environ Monit Assess ; 191(Suppl 1): 344, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222487

RESUMO

Nonnative plants are widely recognized as stressors to wetlands and other ecosystems. They may compete with native plant species or communities and alter ecosystem properties, which can affect ecological condition, posing challenges to resource managers. As part of the United States Environmental Protection Agency's National Wetland Condition Assessment (NWCA), we characterized the status of nonnative plants in wetlands across the conterminous United States (US). Our primary goals were to (1) document the composition of nonnative taxa at 1138 NWCA sites sampled in 2011 and (2) estimate the areal extent of wetland under stress from nonnative plants within the NWCA 2011 sampled population of ~ 25 million ha of wetland (represented by 967 sampled probability sites and the NWCA survey design). A total of 443 unique nonnative taxa were observed, encompassing a species pool adapted to diverse ecological conditions. For individual sites, the number of nonnative taxa ranged from 0 to 29, and total absolute cover of nonnatives ranged from 0 to 160%. We devised the nonnative plant indicator (NNPI) as a categorical indicator of stress (low to very high) from the collective set of nonnative plant taxa occurring at a particular location, based on a decision matrix of exceedance values for nonnative richness, relative frequency, and relative cover. Wetland area of the sampled population occurring in each NNPI category was estimated at the scale of the conterminous US and within five large ecoregions and four broad wetland types. Potential stress from nonnative plants, as indicated by the NNPI category, was low for approximately 61% (~ 15.3 million ha), moderate for about 20% (~ 5.2 million ha), high for about 10% (~ 2.48 million ha), and very high for about 9% (~ 2.2 million ha) of the wetland area in the entire sampled population. Percent of wetland area with high and very high NNPI varied by ecoregional subpopulations: greater within interior and western ecoregions (~ 29 to 87%) than within ecoregions in the eastern half of the nation (~ 11%). Among wetland type subpopulations, greater percent of wetland area with high and very high NNPI was observed for herbaceous vs. woody types and for inland vs. estuarine types. Estimates of wetland area by NNPI categories are expected to be useful to policy makers or resource managers for prioritizing management actions by identifying situations where stress from nonnative plants is most extensive. We also considered four exploratory analyses aimed at providing ecological information useful in interpreting NNPI extent results. We conducted three population-scale analyses examining ecoregional and wetland type population means for (1) the three NNPI metrics, (2) absolute cover of growth-habit groups of nonnative plants, and (3) metrics describing human-mediated disturbance. Finally, we examined ecological relationships with site-level NNPI status using a random forest (RF) analysis with NNPI as the response variable and predictor variables including ecoregion, wetland type, and a variety of characteristics describing natural vegetation structure, environment, and human-mediated disturbance.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/estatística & dados numéricos , Plantas/classificação , Áreas Alagadas , Humanos , Espécies Introduzidas/estatística & dados numéricos , Desenvolvimento Vegetal , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
15.
Environ Monit Assess ; 191(Suppl 1): 266, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222660

RESUMO

Water quality is a central component of ecological assessments but less well characterized in wetlands than other waterbody types. The 2011 National Wetland Condition Assessment, spanning freshwater and brackish wetlands across the conterminous USA, provided an unprecedented opportunity to examine water quality patterns across broad wetland types and geographic scales. Surface water samples were obtained from 634 (56%) of sites visited. Total nitrogen (TN), total phosphorus (TP), planktonic chlorophyll (CHLA), and specific conductance (SPCOND) ranged 4 orders of magnitude across sites and were inter-correlated. Woody versus herbaceous vegetation type was an important classifier, with herbaceous sites having standing water more often and generally higher pH, nutrients, and CHLA. Nutrient ratios spanned a range from P-limited to N-limited in most biogeographic regions, and increasing TP was associated with decreasing TN:TP ratios. Compared to national-scale data for other waterbody types (lakes, streams, marine nearshore), wetlands had generally higher TN and TP but not higher CHLA. Differences among biogeographic regions in water quality were concordant between inland wetlands and lakes, and between marine-coast wetlands and the marine nearshore. Associations of TN, TP, and CHLA to percent agriculture or natural land were stronger for the watershed scale than for smaller concentric buffer scales, suggesting that wetlands are influenced by landuse some distance away. SPCOND was related to landuse in inland wetlands but reflected seawater influence in marine-coast wetlands. Water quality exhibits the same general patterns and responses across wetlands as across other waterbody types and thus can provide a basis for ecological classification and condition assessment.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Qualidade da Água , Áreas Alagadas , Agricultura , Clorofila/análise , Água Doce/química , Concentração de Íons de Hidrogênio , Nutrientes/análise , Plantas/classificação , Águas Salinas/química , Estados Unidos
16.
Environ Monit Assess ; 191(Suppl 1): 327, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222681

RESUMO

One of the biggest challenges when conducting a continental-scale assessment of wetlands is setting appropriate expectations for the assessed sites. The challenge occurs for two reasons: (1) tremendous natural environmental heterogeneity exists within a continental landscape and (2) reference sites vary in quality both across and within major regions of the continent. We describe the process used to set reference expectations and define a disturbance gradient for the United States (US) Environmental Protection Agency's National Wetland Condition Assessment (NWCA). The NWCA employed a probability design and sampled 1138 wetland sites across the conterminous US to make an unbiased assessment of wetland condition. NWCA vegetation data were used to define 10 reporting groups based on ecoregion and wetland type that reduced the naturally occurring variation in wetland vegetation associated with continent-wide differences in biogeography. These reporting groups were used as a basis for defining quantitative criteria for least disturbed and most disturbed conditions and developing indices and thresholds for categories of ecological condition and disturbance. The NWCA vegetation assessment was based on a reference site approach, in which the least disturbed reference sites were used to establish benchmarks for assessing the condition of vegetation at other sites. Reference sites for each reporting group were identified by filtering NWCA sample data for disturbance using a series of abiotic variables. Ultimately, 277 least disturbed sites were used to set reference expectations for the NWCA. The NWCA provided a unique opportunity to improve our conceptual and technical understanding of how to best apply a reference condition approach to assessing wetlands across the US. These results will enhance the technical quality of future national assessments.


Assuntos
Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , United States Environmental Protection Agency/normas , Áreas Alagadas , Benchmarking , Conservação dos Recursos Naturais , Meio Ambiente , Estados Unidos , United States Environmental Protection Agency/organização & administração , United States Environmental Protection Agency/estatística & dados numéricos
18.
Wetl Ecol Manag ; 26(3): 425-439, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31073261

RESUMO

Microbial respiration (Rm) and ecoenzyme activities (EEA) related to microbial carbon, nitrogen, and phosphorus acquisition were measured in 792 freshwater and estuarine wetlands (representing a cumulative area of 217,480 km2) across the continental United States as part of the US EPA's 2011 National Wetland Condition Assessment. EEA stoichiometry was used to construct models for and assess nutrient limitation, carbon use efficiency (CUE), and organic matter decomposition (- k). The wetlands were classified into ten groups based on aggregated ecoregion and wetland type. The wetlands were also assigned to least, intermediate, and most disturbed classes, based on the extent of human influences. Ecoenzyme activity related to C, N and P acquisition, Rm, CUE, and (- k differed among ecoregion-wetland types and, with the exception of C acquisition and (- k, among disturbance classes. Rm and EEA were positively correlated with soil C, N and P content (r = 0.15-0.64) and stoichiometry (r = 0.15-0.48), and negatively correlated with an index of carbon quality (r = - 0.22 to - 0.39). EEA stoichiometry revealed that wetlands were more often P- than N-limited, and that P-limitation increases with increasing disturbance. Our enzyme-based approach for modeling C, N, and P acquisition, and organic matter decomposition, all rooted in stoichiometric theory, provides a mechanism for modeling resource limitations of microbial metabolism and biogeochemical cycling in wetlands. Given the ease of collecting and analyzing soil EEA and their response to wetland disturbance gradients, enzyme stoichiometry models are a cost-effective tool for monitoring ecosystem responses to resource availability and the environmental drivers of microbial metabolism, including those related to global climate changes.

19.
Limnol Oceanogr ; 62(1): S147-S159, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319149

RESUMO

We analyzed ecoenzyme activities related to organic matter processing in 1879 streams and rivers across the continental U.S. as part of the USEPA's National Rivers and Streams Assessment. Ecoenzymatic stoichiometry was used to construct models for carbon use efficiency (CUE) and decomposition (-k). Microbial respiration (Rm) was estimated from sediment organic carbon stocks, CUE and -k. The streams and rivers were classified by size (headwaters: 1st-order; streams: 2nd-3rd order; small rivers: 4th-5th order; big rivers 6th-7th order; and great rivers ≥ 8th order) and condition class (least, intermediate and most disturbed), and grouped into nine ecoregions. There were ecoregion, stream size, and condition class effects for CUE, -k, and Rm, with Rm increasing from eastern ecoregions through the plains to the western ecoregions. CUE, -k, and Rm decreased with increasing streams size and increased with increasing disturbance. Rm, CUE, and -k were correlated with water and sediment chemistry; CUE and -k were also correlated with stream bed fine sediments; and CUE was further correlated with catchment land cover. Rm was extrapolated to ecoregional and national scales, and the results suggest that microbial assemblages account for 12% of the total CO2 outgassing, and nearly 50% of the aquatic metabolism C losses, from U.S. streams and rivers. Cumulative respiratory C losses increased from headwaters to small streams, then decreased with increasing stream size. This U-shaped respiration curve was not evident when streams were viewed by disturbance classes, suggesting that anthropogenic disturbances mask the expected organic matter processing signature of the river continuum.

20.
Environ Sci Technol ; 50(7): 3409-15, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26914108

RESUMO

We describe continental-scale increases in lake and stream total phosphorus (TP) concentrations, identified through periodic probability surveys of thousands of water bodies in the conterminous U.S. The increases, observed over the period 2000-2014 were most notable in sites in relatively undisturbed catchments and where TP was initially low (e.g., less than 10 µg L(-1)). Nationally, the percentage of stream length in the U.S. with TP ≤ 10 µg L(-1) decreased from 24.5 to 10.4 to 1.6% from 2004 to 2009 to 2014; the percentage of lakes with TP ≤ 10 µg L(-1) decreased from 24.9 to 6.7% between 2007 and 2012. Increasing TP concentrations appear to be ubiquitous, but their presence in undeveloped catchments suggests that they cannot be entirely attributed to either point or common non-point sources of TP.


Assuntos
Lagos , Fósforo/análise , Rios , Monitoramento Ambiental/métodos , Lagos/análise , Lagos/química , Rios/química , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...