Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Geophys Res ; 97(D15): 16523-30, 1992 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-11538395

RESUMO

Measurements of peroxyacetyl nitrate (PAN), NO, NO2, HNO3, NOy (total odd nitrogen), and O3 were made in the high-latitude troposphere over North America and Greenland (35 degrees to 82 degrees N) during the Arctic Boundary Layer Expedition (ABLE 3A) (July-August 1988) throughout 0-to 6-km altitudes. These data are analyzed to quantitatively describe the relationships between various odd nitrogen species and assess their significance to global tropospheric chemistry. In the free troposphere, PAN was as much as 25 times more abundant than NOx. PAN to NOx ratio increased with increasing altitude and latitude. PAN was found to be the single most abundant reactive nitrogen species in the free troposphere and constituted a major fraction of NOy, PAN to NOy ratios were about 0.1 in the boundary layer and increased to 0.4 in the free troposphere. A 2-D global photochemical model with C1-C3 hydrocarbon chemistry is used to compare model predictions with measured results. A sizable portion (approximately 50%) of the gaseous reactive nitrogen budget is unaccounted for, and unknown organic nitrates and pernitrates are expected to be present. Model calculations (August 1, 70 degrees N) show that a major fraction of the observed NOx (50 to 70% of median) may find its source in the available PAN reservoir. PAN and the unknown reservoir species may have the potential to control virtually the entire NOx availability of the high latitude troposphere. It is predicted that the summer NOx and O3 mixing ratios in the Arctic/sub-Arctic troposphere would be considerably lower in the absence of the ubiquitous PAN reservoir. Conversely, this PAN reservoir may be responsible for the observed temporal increase in tropospheric O3 at high latitudes.


Assuntos
Atmosfera , Modelos Químicos , Nitrogênio/química , Ozônio/análise , Ácido Peracético/análogos & derivados , Regiões Árticas , Simulação por Computador , Planeta Terra , Fenômenos Geológicos , Geologia , Groenlândia , Hidrocarbonetos/análise , Óxido Nítrico/análise , América do Norte , Ácido Peracético/análise , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA