Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(20): 5576-81, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27125854

RESUMO

Impurities in crystals generally cause point defects and can even suppress crystallization. This general rule, however, does not apply to colloidal crystals formed by soft microgel particles [Iyer ASJ, Lyon LA (2009) Angew Chem Int Ed 48:4562-4566], as, in this case, the larger particles are able to shrink and join the crystal formed by a majority of smaller particles. Using small-angle X-ray scattering, we find the limit in large-particle concentration for this spontaneous deswelling to persist. We rationalize our data in the context of those counterions that are bound to the microgel particles as a result of the electrostatic attraction exerted by the fixed charges residing on the particle periphery. These bound counterions do not contribute to the suspension osmotic pressure in dilute conditions, as they can be seen as internal degrees of freedom associated with each microgel particle. In contrast, at sufficiently high particle concentrations, the counterion cloud of each particle overlaps with that of its neighbors, allowing these ions to freely explore the space outside the particles. We confirm this scenario by directly measuring the osmotic pressure of the suspension. Because these counterions are then no longer bound, they create an osmotic pressure difference between the inside and outside of the microgels, which, if larger than the microgel bulk modulus, can cause deswelling, explaining why large, soft microgel particles feel the squeeze when suspended with a majority of smaller particles. We perform small-angle neutron scattering measurements to further confirm this remarkable behavior.

2.
Nat Mater ; 13(12): 1108-1114, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25194701

RESUMO

Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion; more complex platelet behaviours such as clot contraction are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.


Assuntos
Materiais Biocompatíveis/química , Coagulação Sanguínea/fisiologia , Plaquetas/fisiologia , Fibrina/química , Géis/química , Técnicas Hemostáticas , Modelos Biológicos , Plaquetas/citologia , Endotélio Vascular/citologia , Fibrina/metabolismo , Microscopia Confocal , Domínios e Motivos de Interação entre Proteínas , Propriedades de Superfície
3.
Langmuir ; 30(22): 6314-23, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24295444

RESUMO

Multilayer coatings made from hydrogel microparticles (microgels) are conceptually very simple materials: thin films composed of microgel building blocks held together by polyelectrolyte "glue". However, the apparent simplicity of their fabrication and structure belies extremely complex properties, including those of "dynamic" coatings that display rapid self-healing behavior in the presence of solvent. This contribution covers our work with these materials and highlights some of the key findings regarding damage mechanisms, healing processes, film structure/composition, and how the variation of fabrication parameters can impact self-healing behavior.


Assuntos
Géis/química , Polímeros/química
4.
Adv Healthc Mater ; 2(7): 1045-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23441099

RESUMO

Elastin-like polypeptides (ELPs) are polypentapeptides that undergo hydrophobic collapse and aggregation above a specific transition temperature, Tt . ELP diblocks sharing a common "core" block (I60) but varying "outer" blocks (A80, P40) were designed, where Tt,I < Tt,A < Tt,P . The formation of ∼55 nm diameter mixed micelles from these ELP diblocks was verified using dynamic light scattering (DLS), multiangle light scattering (MALS) and fluorescence resonance energy transfer (FRET). To confer affinity to the blood circulating protein fibrinogen, a fibrinogen-binding tetrapeptide sequence (GPRP) was fused to A80-I60, while P40-I60 was fused to a non-binding control (GPSP). The self-assembling, peptide-displaying, mixed micelles exhibit temperature-modulated avidities for immobilized and soluble fibrinogen at 32 °C and 42 °C. In this initial proof-of-concept design, the engineered mixed micelles were shown to disengage fibrinogen at elevated temperatures. The modular nature of this system can be used for developing in vivo depot systems that will only be triggered to release in situ upon specific stimuli.


Assuntos
Fibrinogênio/química , Micelas , Temperatura , Sequência de Aminoácidos , Transferência Ressonante de Energia de Fluorescência , Luz , Dados de Sequência Molecular , Espalhamento de Radiação
5.
J Phys Chem B ; 115(14): 3761-4, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21425815

RESUMO

Detailed characterization of hydrogel particle erosion revealed critical physicochemical differences between spheres, where network decomposition was informative of network structure. Real-time, in situ monitoring of the triggered erosion of colloidal hydrogels (microgels) was performed via multiangle light scattering. The solution-average molar mass and root-mean-square radii of eroding particles were measured as a function of time for microgels prepared from N-isopropylacrylamide (NIPAm) or N-isopropylmethacrylamide (NIPMAm), copolymerized with a chemically labile cross-linker (1,2-dihydroxylethylene)bisacrylamide (DHEA). Precipitation polymerization was employed to yield particles of comparable dimensions but with distinct topological features. Heterogeneous cross-linker incorporation resulted in a heterogeneous network structure for pNIPAm microgels. During the erosion reaction, mass loss proceeded from the exterior toward the interior of the polymer. In contrast, pNIPMAm microgels had a more homogeneous network structure, which resulted in a more uniform mass loss throughout the particle during erosion. Although both particle types degraded into low molar mass products, pNIPAm microgels were incapable of complete dissolution due to the presence of nondegradable cross-links arising from chain transfer and branching during particle synthesis. The observations described herein provide insight into key design parameters associated with the synthesis of degradable hydrogel particles, which may be of use in various biotechnological applications.


Assuntos
Hidrogéis/química , Acrilamidas/química , Reagentes de Ligações Cruzadas/química , Cinética , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...