Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 316(5828): 1185-8, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17525337

RESUMO

The advent of biotechnology-derived, herbicide-resistant crops has revolutionized farming practices in many countries. Facile, highly effective, environmentally sound, and profitable weed control methods have been rapidly adopted by crop producers who value the benefits associated with biotechnology-derived weed management traits. But a rapid rise in the populations of several troublesome weeds that are tolerant or resistant to herbicides currently used in conjunction with herbicide-resistant crops may signify that the useful lifetime of these economically important weed management traits will be cut short. We describe the development of soybean and other broadleaf plant species resistant to dicamba, a widely used, inexpensive, and environmentally safe herbicide. The dicamba resistance technology will augment current herbicide resistance technologies and extend their effective lifetime. Attributes of both nuclear- and chloroplast-encoded dicamba resistance genes that affect the potency and expected durability of the herbicide resistance trait are examined.


Assuntos
Dicamba/farmacologia , Glycine max/efeitos dos fármacos , Herbicidas/farmacologia , Oxigenases de Função Mista/genética , Agricultura , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Cloroplastos/genética , Resistência a Medicamentos/genética , Engenharia Genética , Vetores Genéticos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Oxirredutases O-Desmetilantes/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Pseudomonas/enzimologia , Pseudomonas/genética , Glycine max/genética , Nicotiana/efeitos dos fármacos , Nicotiana/genética
2.
Arch Biochem Biophys ; 437(1): 20-8, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15820213

RESUMO

Dicamba O-demethylase is a multicomponent enzyme that catalyzes the conversion of the herbicide 2-methoxy-3,6-dichlorobenzoic acid (dicamba) to 3,6-dichlorosalicylic acid (DCSA). The three components of the enzyme were purified and characterized. Oxygenase(DIC) is a homotrimer (alpha)3 with a subunit molecular mass of approximately 40 kDa. FerredoxinDIC and reductaseDIC are monomers with molecular weights of approximately 14 and 45 kDa, respectively. EPR spectroscopic analysis suggested the presence of a single [2Fe-2S](2+/1+) cluster in ferredoxinDIC and a single Rieske [2Fe-2S](2+; 1+) cluster within oxygenaseDIC. Consistent with the presence of a Rieske iron-sulfur cluster, oxygenaseDIC displayed a high reduction potential of E(m,7.0) = -21 mV whereas ferredoxinDIC exhibited a reduction potential of approximately E(m,7.0) = -171 mV. Optimal oxygenaseDIC activity in vitro depended on the addition of Fe2+. The identification of formaldehyde and DCSA as reaction products demonstrated that dicamba O-demethylase acts as a monooxygenase. Taken together, these data suggest that oxygenaseDIC is an important new member of the Rieske non-heme iron family of oxygenases.


Assuntos
Proteínas de Bactérias/química , Complexos Multienzimáticos/química , Oxirredutases O-Desmetilantes/química , Pseudomonas/enzimologia , Proteínas de Bactérias/isolamento & purificação , Clorobenzoatos , Dicamba/química , Ferredoxinas/química , Ferredoxinas/isolamento & purificação , Oxigenases de Função Mista/química , Oxigenases de Função Mista/isolamento & purificação , Complexos Multienzimáticos/isolamento & purificação , Oxirredução , Oxirredutases O-Desmetilantes/isolamento & purificação , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Salicilatos/química
3.
J Biol Chem ; 280(26): 24759-67, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15855162

RESUMO

Dicamba O-demethylase is a multicomponent enzyme from Pseudomonas maltophilia, strain DI-6, that catalyzes the conversion of the widely used herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) to DCSA (3,6-dichlorosalicylic acid). We recently described the biochemical characteristics of the three components of this enzyme (i.e. reductase(DIC), ferredoxin(DIC), and oxygenase(DIC)) and classified the oxygenase component of dicamba O-demethylase as a member of the Rieske non-heme iron family of oxygenases. In the current study, we used N-terminal and internal amino acid sequence information from the purified proteins to clone the genes that encode dicamba O-demethylase. Two reductase genes (ddmA1 and ddmA2) with predicted amino acid sequences of 408 and 409 residues were identified. The open reading frames encode 43.7- and 43.9-kDa proteins that are 99.3% identical to each other and homologous to members of the FAD-dependent pyridine nucleotide reductase family. The ferredoxin coding sequence (ddmB) specifies an 11.4-kDa protein composed of 105 residues with similarity to the adrenodoxin family of [2Fe-2S] bacterial ferredoxins. The oxygenase gene (ddmC) encodes a 37.3-kDa protein composed of 339 amino acids that is homologous to members of the Phthalate family of Rieske non-heme iron oxygenases that function as monooxygenases. Southern analysis localized the oxygenase gene to a megaplasmid in cells of P. maltophilia. Mixtures of the three highly purified recombinant dicamba O-demethylase components overexpressed in Escherichia coli converted dicamba to DCSA with an efficiency similar to that of the native enzyme, suggesting that all of the components required for optimal enzymatic activity have been identified. Computer modeling suggests that oxygenase(DIC) has strong similarities with the core alphasubunits of naphthalene 1,2-dioxygenase. Nonetheless, the present studies point to dicamba O-demethylase as an enzyme system with its own unique combination of characteristics.


Assuntos
Oxirredutases O-Desmetilantes/química , Oxirredutases O-Desmetilantes/genética , Pseudomonas/enzimologia , Adrenodoxina/química , Sequência de Aminoácidos , Southern Blotting , Clorobenzoatos , Clonagem Molecular , Meios de Cultura , DNA/química , Primers do DNA/química , Dicamba/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Ferredoxinas/química , Biblioteca Gênica , Ferro/química , Modelos Moleculares , Dados de Sequência Molecular , Oxirredutases/metabolismo , Oxigênio/química , Oxigenases/química , Oxigenases/metabolismo , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Salicilatos/química , Homologia de Sequência de Aminoácidos
4.
J Plant Physiol ; 160(5): 445-50, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12806771

RESUMO

Two previous kinetic studies on the Arabidopsis thaliana leaf NAD-dependent formate dehydrogenase (EC 1.2.1.2) have demonstrated two very different sets of Km values for the formate and NAD+ substrates. We examined the kinetics of the enzyme partially purified from a leaf extract by gel-filtration desalting and chromatography on DEAE-cellulose, as well as by isolation of a mitochondria-enriched fraction obtained by differential centrifugation. Both of these methods produce a formate dehydrogenase enzyme with the higher Km values of approximately 10 mmol/L formate and 75 mumol/L NAD+. The kinetic properties of the Arabidopsis formate dehydrogenase expressed to high levels in transgenic tobacco plants were also those of the high Km form. The high Km form of the enzyme converted to a low Km form by heating for 5 minutes at 60 degrees C. An Arrhenius plot of the activity during the heating process was linear, indicating that the heating did not cause alterations in either the active site or the thermal dependence of the catalytic reaction. We conclude that the native form of the formate dehydrogenase probably resembles the form with the higher Km values. Heating seemingly converts this native enzyme to the molten globule state and cooling results in formation of a non-native structure with altered kinetic properties.


Assuntos
Arabidopsis/enzimologia , Formiato Desidrogenases/metabolismo , Folhas de Planta/enzimologia , Arabidopsis/genética , Formiato Desidrogenases/genética , Formiato Desidrogenases/isolamento & purificação , Temperatura Alta , Cinética , Plantas Geneticamente Modificadas , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA