Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(13): 7777-7782, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33015698

RESUMO

Collisions of N+ and N2+ with C3 hydrocarbons, represented by a self assembled monolayer of propanethiol on a polcrystalline gold surface, were investigated by experiments over the incident energy range between 5 eV and 100 eV. For N+, formation of HCN+ is observed at incident energies of projectile ions as low as 20 eV. In the case of N2+ projectile ions, the yield of HCN+ increased above zero only at incident energies of about 50 eV. This collision energy in the laboratory frame corresponds to an activation energy of about 3 eV to 3.5 eV. In the case of N+ projectile ions, the yield of HCN+ was large for most of the incident energy range, but decreased to zero at incident energies below 20 eV. This may indicate a very small energy threshold for the surface reaction between N+ and C3 hydrocarbons of a few tenths of an eV. Such a threshold for the formation of HCN+ may exist also for collisions of N+ with an adsorbed mixture of hydrocarbon molecules.

4.
J Phys Chem A ; 117(44): 11225-32, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24124996

RESUMO

Electron ionization and time-of-flight mass spectrometry was used to investigate the phenol clusters (PhOH)n of different size from single molecule to large clusters: in coexpansion with He, the dimers n = 2 are mostly generated; in Ar, large species of n ≥ 10 also occur. Besides [(PhOH)n](+•) cluster ion series, hydrated phenol cluster ions [(PhOH)n·xH2O](+•) with up to x = 3 water molecules and dehydrated phenol clusters [(PhOH)n-H2O](+•) were observed. The hydrated phenol series exhibits minima and maxima that are interpreted as evidence for proton transfer between the hydrogen bonded cluster ions of cyclic structures. The proton transfer leads to a water generation within the clusters, and subsequent elimination of the diphenyl ether molecule(s) from the cluster yields the hydrated phenol cluster ions. Alternatively, a water molecule release yields a series of dehydrated phenols, among which the diphenyl ether ion [PhOPh](+•) (n = 2) constitutes the maximum.


Assuntos
Fenol/química , Hélio/química , Ligação de Hidrogênio , Íons , Espectrometria de Massas , Prótons , Água/química
5.
J Phys Chem A ; 117(39): 9653-60, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23614645

RESUMO

A significant increase of the ion yield at m/z 27 in collisions of low-energy ions of N2(+) and N(+) with hydrocarbon-covered room-temperature or heated surfaces of tungsten, carbon-fiber composite, and beryllium, not observed in analogous collisions of Ar(+), is ascribed to the formation of HCN(+) in heterogeneous reactions between N2(+) or N(+) and surface hydrocarbons. The formation of HCN(+) in the reaction with N(+) indicated an exothermic reaction with no activation barrier, likely to occur even at very low collision energies. In the reaction with N2(+), the formation of HCN(+) was observed to a different degree on these room-temperature and heated (150 and 300 °C) surfaces at incident energies above about 50 eV. This finding suggested an activation barrier or reaction endothermicity of the heterogeneous reaction of about 3-3.5 eV. The main process in N2(+) or N(+) interaction with the surfaces is ion neutralization; the probability of forming the reaction product HCN(+) was very roughly estimated for both N2(+) and N(+) ions to about one in 10(4) collisions with the surfaces.

6.
J Phys Chem A ; 115(25): 7310-5, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21520905

RESUMO

Reactions of (14)N(+)((3)P), (15)N(+)((3)P), and Kr(+) with propane, propene, and propyne were studied using the selected ion flow tube, SIFT, technique. Thermal rate constants in all N(+)/C(3) systems were k = (2 ± 0.4) × 10(-9) cm(3) molecule(-1) s(-1), close to the collisional rate constants. With propane and propene, only hydrocarbon ions were found among the products of reactions with N(+); in propyne about 15% of the products were N-containing ions (C(3)H(2)N(+), C(2)H(4)N(+), C(2)H(3)N(+), C(2)H(2)N(+)), and the rest were hydrocarbon ions. A comparison with product ions from electron transfer between Kr(+) (of recombination energy similar to that for N(+)((3)P)) and the C(3) hydrocarbons and further analysis of the results led to an estimation of an approximate ratio of electron transfer vs hydride-ion transfer reactions leading to the hydrocarbon product ions: in propane the ratio was 2:1, in propene 3:1, and in propyne 5:1. A fraction of product ions resulted from reactions leading to the excited neutral product N*.

7.
J Phys Chem A ; 114(23): 6463-71, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20491460

RESUMO

Crossed-beam scattering experiments were carried out at collision energies of 4.51 and 2.71 eV to elucidate the electronic states involved in the nondissociative and dissociative electron-transfer reactions observed following CO(2)(2+)/CO(2) collisions. Specifically, we focus on the observation that, in the dissociative electron-transfer reaction, forming CO(+), the majority of the CO(+) product ions are formed via electron capture by the CO(2)(2+) rather than via ejection of an electron from the neutral CO(2) reaction partner. The main channels resulting in nondissociative electron transfer are reactions of the ground (X(3)Sigma(g)(-)) and excited states of CO(2)(2+) to give different combinations of the ground and excited states of the product pair of CO(2)(+) ions in which the combination AA appears to be significant. The CO(+) ions appear mainly to arise from slow dissociation of CO(2)(+)(b(4)Pi(u)) formed following electron capture by the ground state of the dication reactant (X(3)Sigma(g)(-)), with possible contributions from electron capture by higher triplet excited states of the dication.

8.
Phys Chem Chem Phys ; 12(23): 6233-43, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20396821

RESUMO

The single electron transfer reactions between (13)CO(2)(2+) and (12)CO(2) and between (18)O(2)(2+) and (16)O(2) have been studied, using a position-sensitive coincidence technique, to test recently proposed explanations for the preferential dissociation of the (13)CO(2)(+) ion (the capture monocation) formed following electron transfer to (13)CO(2)(2+). In our studies of the carbon dioxide collision system, in agreement with previous work, the capture monocation shows a greater propensity to dissociate than the monocation formed from the neutral, (12)CO(2)(+) (the ejection monocation). The coincidence data clearly show that the dissociation pathways of the (13)CO(2)(+) and (12)CO(2)(+) ions are different and are consistent with the ejection monocation dissociating via population of the C(2)Sigma state, whilst the capture ion is predominantly directly formed in dissociative quartet states. This state assignment is in accord with an expected preference for one-electron transitions in the electron transfer process. A propensity for one-electron transitions also rationalizes our observation that following dissociative single electron transfer between (18)O(2)(2+) and (16)O(2) the ejection monocation ((16)O(2)(+)) preferentially dissociates; the opposite situation to that observed for carbon dioxide. The coincidence results for this reaction indicate the (16)O(2)(+) dissociation results from population of the B((2)Sigma) state. The less favoured dissociation of the capture monocation clearly involves population of a different electronic state(s) to those populated in the ejection ion. Indeed, the experimental data are consistent with the dissociation of the capture monocation via predissociated levels of the b((4)Sigma) state. Since the population of the B((2)Sigma) state from the neutral O(2) molecule involves a one-electron transition, and the population of the valence dissociative states of O(2)(+) from the dication are multi-electron processes, the preferential dissociation of the ejection monocation in this collision system can be rationalized by the same principles used to explain the electron transfer reactivity of CO(2)(2+) with CO(2).

9.
J Phys Chem A ; 114(3): 1384-91, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19807146

RESUMO

The formation of D(2)CN(+) in the reaction of N(+) ((3)P) with CD(4) was studied using the crossed beam technique at collision energies of 3.66 and 4.86 eV. The experiments were complemented by calculations of stationary points on the triplet hypersurface of the system. The scattering data showed that the reaction proceeds by the formation of two intermediate complexes having different lifetimes: a long-lived statistical intermediate and a short-lived complex (mean lifetime about one period of an average rotation) with more energy in translation than the statistical complex. Comparison with theoretical calculations suggests that the long-lived complex leads the CDND(+) isomer of the product ion, whereas the short-lived complex leads prevailingly to the CD(2)N(+) isomer. The product DCN(+) results from further decomposition of the primary product D(2)CN(+), whereas CD(3)(+) is formed both by a hydride-ion transfer and a long-lived complex decomposition.

10.
J Phys Chem A ; 113(52): 14838-44, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19769345

RESUMO

Survival probabilities, S(a) (%), of hydrocarbon ions C1, C2, and C3 and several nonhydrocarbon ions (Ar(+), N(2)(+), CO(2)(+)) on room-temperature (hydrocarbon-covered) and heated (600 degrees C) surfaces of carbon (HOPG), tungsten, and beryllium were experimentally determined using the ion-surface scattering method for several incident energies from a few electronvolts up to about 50 eV and for the incident angle of 30 degrees (with respect to the surface). A simple correlation between S(a) and the ionization energy (IE) of the incident ions was found in the semilogarithmic plot of S(a) versus IE. The plots of the data at 31 eV were linear for all studied surfaces and could be fitted by an empirical equation log S(a) = a - b(IE). The values of the parameters a and b were determined for all investigated room-temperature and heated surfaces and can be used to estimate unknown survival probabilities of ions on these surfaces from their ionization energies.

11.
J Am Soc Mass Spectrom ; 20(6): 927-38, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19269188

RESUMO

Surface-induced interactions of the projectile ion C(2)D(4)(+) with room-temperature (hydrocarbon covered) stainless steel, carbon highly oriented pyrolytic graphite (HOPG), and two different types of diamond surfaces (O-terminated and H-terminated) were investigated over the range of incident energies from a few eV up to 50 eV. The relative abundance of the product ions in dependence on the incident energy of the projectile ion [collision-energy resolved mass spectra, (CERMS) curves] was determined. The product ion mass spectra contained ions resulting from direct dissociation of the projectile ions, from chemical reactions with the hydrocarbons on the surface, and (to a small extent) from sputtering of the surface material. Sputtering of the surface layer by low-energy Ar(+) ions (5-400 eV) indicated the presence of hydrocarbons on all studied surfaces. The CERMS curves of the product ions were analyzed to obtain both CERMS curves for the products of direct surface-induced dissociation of the projectile ion and CERMS curves of products of surface reactions. From the former, the fraction of energy converted in the surface collision into the internal excitation of the projectile ion was estimated as 10% of the incident energy. The internal energy of the surface-excited projectile ions was very similar for all studied surfaces. The H-terminated room-temperature diamond surface differed from the other surfaces only in the fraction of product ions formed in H-atom transfer surface reactions (45% of all product ions formed versus 70% on the other surfaces).

12.
Phys Chem Chem Phys ; 10(33): 5135-43, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18701963

RESUMO

The bimolecular reactivity of the CO(2)(2+) dication with neutral CO(2) is investigated using triple quadrupole and ion-ion coincidence mass spectrometry. Crucial for product analysis is the use of appropriate isotope labelling in the quadrupole experiments in order to distinguish the different reactive pathways. The main reaction corresponds to single-electron transfer from the neutral reagent to the dication, i.e. CO(2)(2+) + CO(2) --> 2CO(2)(+); this process is exothermic by almost 10 eV, if ground state monocations are formed. Interestingly, the results indicate that the CO(2)(+) ion formed when the dication accepts an electron dissociates far more readily than the CO(2)(+) ion formed from the neutral CO(2) molecule. This differentiation of the two CO(2)(+) products is rationalized by showing that the population of the key dissociative states of the CO(2)(+) monocation will be favoured from the CO(2)(2+) dication rather than from neutral CO(2). In addition, two bond-forming reactions are observed as minor channels, one of which leads to CO(+) and O(2)(+) as ionic products and the other affords a long-lived C(2)O(3)(2+) dication.

14.
Eur J Mass Spectrom (Chichester) ; 14(6): 335-43, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19136722

RESUMO

Collisions of C3Hn+ (n = 2-8) ions and some of their per- deuterated analogs with room temperature carbon (HOPG) surfaces (hydrocarbon-covered) were investigated over the incident energy range 13-45 eV in beam scattering experiments. The mass spectra of product ions were measured and main fragmentation paths of the incident projectile ions, energized in the surface collision, were determined. The extent of fragmentation increased with increasing incident energy. Mass spectra of even-electron ions C3H7+ and C3H5+ showed only fragmentations, mass spectra of radical cations C3H8*+ and C3H6*+ showed both simple fragmentations of the projectile ion and formation of products of its surface chemical reaction (H-atom transfer between the projectile ion and hydrocarbons on the surface). No carbon-chain build-up reaction (formation of C4 hydrocarbons) was detected. The survival probability of the incident ions, S(a), was usually found to be about 1-2% for the radical cation projectile ions C3H8*+, C3H6*+, C3H4*+ and C3H2*+ and several percent up to about 20% for the even-electron projectile ions C3H7+, C3H5+, C3H3+. A plot of S(a) values of C1, C2, C3, some C7 hydrocarbon ions, Ar+ and CO2+ on hydrocarbon-covered carbon surfaces as a function of the ionization energies (IE) of the projectile species showed a drop from about 10% to about 1% and less at IE 8.5-9.5 eV and further decrease with increasing IE. A strong correlation was found between log S(a) and IE, a linear decrease over the entire range of IE investigated (7-16 eV), described by log S(a) = (3.9 +/- 0.5)-(0.39 +/- 0.04) IE.

15.
J Phys Chem A ; 110(20): 6447-53, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16706400

RESUMO

Structural aspects as well as the stability and reactivity of the CHBr(2+) dication are studied both experimentally and theoretically. Translational energy distributions of the CHBr(+) products from charge transfer between CHBr(2+) and Kr indicate that the dication exists in two isomeric forms, H-C-Br(2+) and C-Br-H(2+). In the reaction of CHBr(2+) with H(2), the dominant channel corresponds to proton transfer leading to CBr(+) + H(3)(+). Other reaction channels involve the formation of the intermediates CH(3)Br(2+) and CH(2)BrH(2+), respectively. Both of the latter dications can either lose a proton to form CH(2)Br(+) or undergo a spin-isomerization followed by cleavage of the C-Br bond. The proposed mechanisms are supported by DFT calculations and deuterium labeling experiments.

16.
J Phys Chem A ; 110(9): 2898-905, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16509611

RESUMO

The QCISD and QCISD(T) quantum chemical methods have been used to characterize the energetics of various possible mechanisms for the formation of HCF2+ from the bond-forming reaction of CF3(2+) with H2. The stationary points on four different pathways leading to the product combinations HCF2+ + H+ + F and HCF2+ + HF+ have been calculated. All four pathways begin with the formation of a collision complex [H2-CF3]2+, followed by an internal hydrogen atom migration to give HC(FH)F2(2+). In two of the mechanisms, immediate charge separation of HC(FH)F2(2+) via loss of either HF+ or a proton, followed by loss of an F atom, yields the experimentally observed bond-forming product HCF2+. For the other two mechanisms, internal hydrogen rearrangement of HC(FH)F2(2+) to give C(FH)2F(2+), followed by charge separation, yields the product CF2H+. This product can then overcome a 2.04 eV barrier to rearrange to the HCF2+ isomer, which is 1.80 eV more stable. All four calculated mechanisms are in agreement with the isotope effects and collision energy dependencies of the product ion cross sections that have been previously observed experimentally following collisions between CF3(2+) and H2/D2. We find that in this open-shell system, CCSD(T) and QCISD(T) T1-diagnostic values of up to 0.04 are acceptable. A series of angularly resolved crossed-beam scattering experiments on collisions of CF3(2+) with D2 have also been performed. These experiments show two distinct channels leading to the formation of DCF2+. One channel appears to correspond to the pathway leading to the ground state 1DCF2+ + D+ + F product asymptote and the other to the 3DCF2+ + D+ + F product asymptote, which is 5.76 eV higher in energy. The experimental kinetic energy releases for these channels, 7.55 and 1.55 eV respectively, have been determined from the velocities of the DCF2+ product ion and are in agreement with the reaction mechanisms calculated quantum chemically. We suggest that both of these observed experimental channels are governed by the reaction mechanism we calculate in which charge separation occurs first by loss of a proton, without further hydrogen atom rearrangement, followed by loss of an F atom to give the final products 1DCF2+ + D+ + F or 3DCF2+ + D+ + F.

17.
Chemistry ; 12(9): 2465-71, 2006 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-16416496

RESUMO

The competition between proton and electron transfer in reactions of mass-selected dications CHX2+ (X = F, Cl, Br, and I) with rare gas atoms (Ne, Ar, Kr, and Xe) and selected molecular reagents (N2, O2, CO, H2O, and HCl) is studied in the gas phase. In the ion-molecule reactions of CHX2+ dications with atoms and nonpolar molecules, it is the energy balance of electron transfer that acts as the decisive factor: when the exothermicity of electron transfer exceeds 2 eV, this process predominates at the expense of bond-forming proton transfer. In marked contrast, the reactions between these triatomic dications and polar molecules are governed for the benefit of the thermochemically more favored products resulting from proton transfer.

18.
J Phys Chem A ; 109(45): 10208-15, 2005 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16833313

RESUMO

Interaction of C2Hn+ (n = 2-5) hydrocarbon ions and some of their isotopic variants with room-temperature and heated (600 degrees C) highly oriented pyrolytic graphite (HOPG) surfaces was investigated over the range of incident energies 11-46 eV and an incident angle of 60 degrees with respect to the surface normal. The work is an extension of our earlier research on surface interactions of CHn+ (n = 3-5) ions. Mass spectra, translational energy distributions, and angular distributions of product ions were measured. Collisions with the HOPG surface heated to 600 degrees C showed only partial or substantial dissociation of the projectile ions; translational energy distributions of the product ions peaked at about 50% of the incident energy. Interactions with the HOPG surface at room temperature showed both surface-induced dissociation of the projectiles and, in the case of radical cation projectiles C2H2+* and C2H4+*, chemical reactions with the hydrocarbons on the surface. These reactions were (i) H-atom transfer to the projectile, formation of protonated projectiles, and their subsequent fragmentation and (ii) formation of a carbon chain build-up product in reactions of the projectile ion with a terminal CH3-group of the surface hydrocarbons and subsequent fragmentation of the product ion to C3H3+. The product ions were formed in inelastic collisions in which the translational energy of the surface-excited projectile peaked at about 32% of the incident energy. Angular distributions of reaction products showed peaking at subspecular angles close to 68 degrees (heated surfaces) and 72 degrees (room-temperature surfaces). The absolute survival probability at the incident angle of 60 degrees was about 0.1% for C2H2+*, close to 1% for C2H4+* and C2H5+, and about 3-6% for C2H3+.

19.
J Am Soc Mass Spectrom ; 14(12): 1360-72, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14652185

RESUMO

Surface-induced dissociation (SID) and reactions following impact of well-defined ion beams of polyatomic cations C2H5OH+, CH4+, and CH5+ (and its deuterated variants) at several incident angles and energies with self-assembled monolayers (SAM), carbon surfaces, and hydrocarbon covered stainless steel were investigated by the scattering method. Energy transfer and partitioning of the incident projectile energy into internal excitation of the projectile, translational energy of products, and energy transferred into the surface were deduced from the mass spectra and the translational energy and angular distributions of the product ions. Conversion of ion impact energy into internal energy of the recoiling ions peaked at about 17% of the incident energy for the perfluoro-hydrocarbon SAM, and at about 6% for the other surfaces investigated. Ion survival probability is about 30-50 times higher for closed-shell ions than for open-shell radical cations (e.g., 12% for CD5+ versus 0.3% for CD4+, at the incident angle of 60 degrees with respect to the surface normal). Contour velocity plots for inelastic scattering of CD5+ from hydrocarbon-coated and hydrocarbon-free highly oriented pyrolytic graphite (HOPG) surfaces gave effective masses of the surface involved in the scattering event, approximately matching that of an ethyl group (or two methyl groups) and four to five carbon atoms, respectively. Internal energy effects in impacting ions on SID were investigated by comparing collision energy resolved mass spectra (CERMS) of methane ions generated in a low pressure Nier-type electron impact source versus those generated in a Colutron source in which ions undergo many collisions prior to extraction and are essentially vibrationally relaxed. This comparison supports the hypothesis that internal energy of incident projectile ions is fully available to drive their dissociation following surface impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...