Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 345: 112117, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38750798

RESUMO

Coffee plants contain well-known xanthines as caffeine. Three Coffea species grown in a controlled greenhouse environment were the focus of this research. Coffea arabica and C. canephora are two first principal commercial species and commonly known as arabica and robusta, respectively. Originating in Central Africa, C. anthonyi is a novel species with small leaves. The xanthine metabolites in flower, fruit and leaf extracts were compared using both targeted and untargeted metabolomics approaches. We evaluated how the xanthine derivatives and FQA isomers relate to the expression of biosynthetic genes encoding N- and O-methyltransferases. Theobromine built up in leaves of C. anthonyi because caffeine biosynthesis was hindered in the absence of synthase gene expression. Despite this, green fruits expressed these genes and they produced caffeine. Given that C. anthonyi evolved successfully over time, these findings put into question the defensive role of caffeine in leaves. An overview of the histolocalisation of xanthines in the different flower parts of Coffea arabica was also provided. The gynoecium contained more theobromine than the flower buds or petals. This could be attributed to increased caffeine biosynthesis before fructification. The presence of theophylline and the absence of theobromine in the petals indicate that caffeine is catabolized more in the petals than in the gynoecium.

2.
Physiol Plant ; 176(3): e14315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693794

RESUMO

Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production. The aim of this study is to identify genomic regions that regulate root morphology in response to nitrate availability. The natural variability offered by 300 inbred lines was screened at two experimental locations. Seedlings grew hydroponically with low or elevated nitrate levels. Fifteen traits related to biomass production and root morphology were measured. On average across the panel, a low nitrate level increased the root-to-shoot biomass ratio and the lateral root length. A large phenotypic variation was observed, along with important heritability values and genotypic effects, but low genotype-by-nitrogen interactions. Genome-wide association study and bulk segregant analysis were used to identify loci regulating phenotypic traits. The first approach nominated 319 SNPs that were combined into 80 QTLs. Three QTLs identified on the A07 and C07 chromosomes were stable across nitrate levels and/or experimental locations. The second approach involved genotyping two groups of individuals from an experimental F2 population created by crossing two accessions with contrasting lateral root lengths. These individuals were found in the tails of the phenotypic distribution. Co-localized QTLs found in both mapping approaches covered a chromosomal region on the A06 chromosome. The QTL regions contained some genes putatively involved in root organogenesis and represent selection targets for redesigning the root morphology of rapeseed.


Assuntos
Brassica napus , Nitrogênio , Fenótipo , Raízes de Plantas , Locos de Características Quantitativas , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo , Locos de Características Quantitativas/genética , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/anatomia & histologia , Brassica napus/metabolismo , Genótipo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Biomassa , Nitratos/metabolismo , Mapeamento Cromossômico , Variação Genética
3.
Front Plant Sci ; 14: 1232421, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767293

RESUMO

Chilling temperatures represent a challenge for crop species originating from warm geographical areas. In this situation, biostimulants serve as an eco-friendly resource to mitigate cold stress in crops. Tomato (Solanum lycopersicum L.) is an economically important vegetable crop, but quite sensitive to cold stress, which it encounters in both open field and greenhouse settings. In this study, the biostimulant effect of a brown-seaweed extract (BSE) has been evaluated in tomato exposed to low temperature. To assess the product effects, physiological and molecular characterizations were conducted. Under cold stress conditions, stomatal conductance, net photosynthesis, and yield were significantly (p ≤ 0.05) higher in BSE-treated plants compared to the untreated ones. A global transcriptomic survey after BSE application revealed the impact of the BSE treatment on genes leading to key responses to cold stress. This was highlighted by the significantly enriched GO categories relative to proline (GO:0006560), flavonoids (GO:0009812, GO:0009813), and chlorophyll (GO:0015994). Molecular data were integrated by biochemical analysis showing that the BSE treatment causes greater proline, polyphenols, flavonoids, tannins, and carotenoids contents.The study highlighted the role of antioxidant molecules to enhance tomato tolerance to low temperature mediated by BSE-based biostimulant.

4.
Front Plant Sci ; 13: 983772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262647

RESUMO

A comprehensive approach using phenomics and global transcriptomics for dissecting plant response to biostimulants is illustrated with tomato (Solanum lycopersicum cv. Micro-Tom and Rio Grande) plants cultivated in the laboratory, greenhouse, and open field conditions. Biostimulant treatment based on an Ascophyllum nodosum extract (ANE) was applied as a foliar spray with two doses (1 or 2 l ha-1) at three different phenological stages (BBCH51, BBCH61, and BBCH65) during the flowering phase. Both ANE doses resulted in greater net photosynthesis rate, stomatal conductance, and fruit yield across all culture conditions. A global transcriptomic analysis of leaves from plants grown in the climate chamber, revealed a greater number of differentially expressed genes (DEGs) with the low ANE dose compared to the greater one. The second and third applications induced broader transcriptome changes compared to the first one, indicating a cumulative treatment effect. The functional enrichment analysis of DEGs highlighted pathways related to stimulus-response and photosynthesis, consistent with the morpho-physiological observations. This study is the first comprehensive dual-omics approach for profiling plant responses to biostimulants across three different culture conditions.

5.
Physiol Plant ; 174(4): e13737, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35717612

RESUMO

Global climate change, especially heatwaves and aridity, is a major threat to agricultural production and food security. This requires common efforts from the scientific community to find effective solutions to better understand and protect the plant's vulnerabilities to high temperatures. The current study demonstrates the potential of cellooligosaccharides (COS), which are native and oxidized signaling molecules released by lytic polysaccharide monooxygenases (LPMO) enzymes during cell wall degradation by microbial pathogens. The extracellular perception of COS leads to the activation of damage-triggered immunity, often protecting the plant against biotic stress. However, how these signaling molecules affect abiotic stress tolerance is poorly understood. Here, we show that native COS and oxidized COS (oxiCOS) perception increase the transcript levels of several HEAT SHOCK FACTORS (HSFs) and HEAT SHOCK PROTEINS (HSPs) genes in Arabidopsis plants. However, only oxiCOS treatment triggers ethylene priming and increases thermotolerance. Furthermore, the function of the transcription factor HSFA2 is required for these processes. Altogether, our results indicate that the perception of Damage-Associated Molecular Patterns (DAMPs) may improve tolerance to adverse abiotic conditions, like exposure to high temperatures.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oligossacarídeos/metabolismo , Termotolerância , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Temperatura Alta , Oxirredução , Proteínas de Plantas/metabolismo , Termotolerância/genética
7.
J Exp Bot ; 73(11): 3569-3583, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35304891

RESUMO

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treatment increased the root to shoot biomass ratio and promoted the proliferation of lateral roots and root hairs. The cost of a larger root system did not impact shoot biomass. Greater biomass production could be achieved through increased root length or through specific root hair characteristics. A greater number of root hairs may provide a low-resistance pathway under elevated N conditions, while root hair length may enhance root zone exploration under low N conditions. The variability of N uptake and the expression levels of genes encoding nitrate transporters were measured. A positive correlation was found between root system size and high-affinity nitrate uptake, emphasizing the benefits of an exploratory root organ in N acquisition. The expression levels of NRT1.2/NPF4.6, NRT2.2, and NRT1.5/NPF7.3 negatively correlated with some root morphological traits. Such basic knowledge in Arabidopsis demonstrates the importance of root phenes to improve N acquisition and paves the way to design eudicot ideotypes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biomassa , Nitratos/metabolismo , Óxidos de Nitrogênio/metabolismo , Raízes de Plantas/metabolismo
8.
Commun Biol ; 4(1): 727, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117349

RESUMO

Lytic Polysaccharide Monooxygenases (LPMOs) are powerful redox enzymes able to oxidatively cleave recalcitrant polysaccharides. Widely conserved across biological kingdoms, LPMOs of the AA9 family are deployed by phytopathogens to deconstruct cellulose polymers. In response, plants have evolved sophisticated mechanisms to sense cell wall damage and thus self-triggering Damage Triggered Immunity responses. Here, we show that Arabidopsis plants exposed to LPMO products triggered the innate immunity ultimately leading to increased resistance to the necrotrophic fungus Botrytis cinerea. We demonstrated that plants undergo a deep transcriptional reprogramming upon elicitation with AA9 derived cellulose- or cello-oligosaccharides (AA9_COS). To decipher the specific effects of native and oxidized LPMO-generated AA9_COS, a pairwise comparison with cellobiose, the smallest non-oxidized unit constituting cellulose, is presented. Moreover, we identified two leucine-rich repeat receptor-like kinases, namely STRESS INDUCED FACTOR 2 and 4, playing a crucial role in signaling the AA9_COS-dependent responses such as camalexin production. Furthermore, increased levels of ethylene, jasmonic and salicylic acid hormones, along with deposition of callose in the cell wall was observed. Collectively, our data reveal that LPMOs might play a crucial role in plant-pathogen interactions.


Assuntos
Arabidopsis/imunologia , Botrytis/imunologia , Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Oligossacarídeos/metabolismo , Doenças das Plantas/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Resistência à Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/fisiologia , Oligossacarídeos/fisiologia , Doenças das Plantas/microbiologia , Sordariales/metabolismo
9.
Plant Physiol ; 185(2): 519-532, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721908

RESUMO

The circadian clock coordinates the physiological responses of a biological system to day and night rhythms through complex loops of transcriptional/translational regulation. It can respond to external stimuli and adjust generated circadian oscillations accordingly to maintain an endogenous period close to 24 h. However, the interaction between nutritional status and circadian rhythms in plants is poorly understood. Magnesium (Mg) is essential for numerous biological processes in plants, and its homeostasis is crucial to maintain optimal development and growth. Magnesium deficiency in young Arabidopsis thaliana seedlings increased the period of circadian oscillations of the CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) promoter (pCCA1:LUC) activity and dampened their amplitude under constant light in a dose-dependent manner. Although the circadian period increase caused by Mg deficiency was light dependent, it did not depend on active photosynthesis. Mathematical modeling of the Mg input into the circadian clock reproduced the experimental increase of the circadian period and suggested that Mg is likely to affect global transcription/translation levels rather than a single component of the circadian oscillator. Upon addition of a low dose of cycloheximide to perturb translation, the circadian period increased further under Mg deficiency, which was rescued when sufficient Mg was supplied, supporting the model's prediction. These findings suggest that sufficient Mg supply is required to support proper timekeeping in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Magnésio/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Cicloeximida/farmacologia , Homeostase , Luz , Deficiência de Magnésio , Modelos Teóricos , Regiões Promotoras Genéticas/genética , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Fatores de Tempo , Fatores de Transcrição/genética
10.
Front Plant Sci ; 11: 568009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178235

RESUMO

The root system is responsible for soil resources acquisition. Hence, optimizing crop root characteristics has considerable implications for agricultural production. This study evaluated a panel of twenty-eight European modern cultivars of oilseed rape (Brassica napus L.) cultivated in laboratory and field environments. Root morphology was screened using a high-throughput hydroponic growth system with two divergent nitrogen supplies. The panel showed an important diversity for biomass production and root morphological traits. Differences in root and shoot dry biomasses and lateral root length were mainly explained by the genotype, and differences in primary root length by nitrogen nutrition. The cultivars were tested in a pluriannual field trial. The field variation for yield and seed quality traits attributed to the genotype was more important than the year or the genotype × year interaction effects. The total root length measured at the seedling stage could predict the proportion of nitrogen taken up from the field and reallocated to seed organs, a component of the nitrogen use efficiency. The genetic interrelationship between cultivars, established with simple sequence repeat markers, indicated a very narrow genetic base. Positive correlations were found between the genetic distance measures, root morphological traits during nitrogen depletion and yield components. This study illustrates a root phenotyping screen in the laboratory with a proof of concept evaluation in the field. The results could assist future genetic improvements in oilseed rape for desirable root characteristics to reduce nutrient losses in the environment.

11.
Front Plant Sci ; 11: 563, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582226

RESUMO

Magnesium (Mg) is essential for many biological processes in plant cells, and its deficiency causes yield reduction in crop systems. Low Mg status reportedly affects photosynthesis, sucrose partitioning and biomass allocation. However, earlier physiological responses to Mg deficiency are scarcely described. Here, we report that Mg deficiency in Arabidopsis thaliana first modified the mineral profile in mature leaves within 1 or 2 days, then affected sucrose partitioning after 4 days, and net photosynthesis and biomass production after 6 days. The short-term Mg deficiency reduced the contents of phosphorus (P), potassium, manganese, zinc and molybdenum in mature but not in expanding (young) leaves. While P content decreased in mature leaves, P transport from roots to mature leaves was not affected, indicating that Mg deficiency triggered retranslocation of the mineral nutrients from mature leaves. A global transcriptome analysis revealed that Mg deficiency triggered the expression of genes involved in defence response in young leaves.

12.
Front Plant Sci ; 10: 748, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244873

RESUMO

Hyperaccumulation and hypertolerance of Trace Metal Elements (TME) like Cd and Zn are highly variable in pseudo-metallophytes species. In this study we compared the impact of high Cd or Zn concentration on the photosynthetic apparatus of the Arabidopsis arenosa and Arabidopsis halleri pseudo-metallophytes growing on the same contaminated site in Piekary Slaskie in southern Poland. Plants were grown in hydroponic culture for 6 weeks, and then treated with 1.0 mM Cd or 5.0 mM Zn for 5 days. Chlorophyll a fluorescence and pigment content were measured after 0, 1, 2, 3, 4, and 5 days in plants grown in control and exposed to Cd or Zn treatments. Moreover, the effect of TME excess on the level of oxidative stress and gas-exchange parameters were investigated. In both plant species, exposure to high Cd or Zn induced a decrease in chlorophyll and an increase in anthocyanin contents in leaves compared to the control condition. After 5 days Cd treatment, energy absorbance, trapped energy flux and the percentage of active reaction centers decreased in both species. However, the dissipated energy flux in the leaves of A. arenosa was smaller than in A. halleri. Zn treatment had more toxic effect than Cd on electron transport in A. halleri compared with A. arenosa. A. arenosa plants treated with Zn excess did not react as strongly as in the Cd treatment and a decrease only in electron transport flux and percentage of active reaction centers compared with control was observed. The two species showed contrasting Cd and Zn accumulation. Cd concentration was almost 3-fold higher in A. arenosa leaves than in A. halleri. On the opposite, A. halleri leaves contained 3-fold higher Zn concentration than A. arenosa. In short, our results showed that the two Arabidopsis metallicolous populations are resistant to high Cd or Zn concentration, however, the photosynthetic apparatus responded differently to the toxic effects.

14.
Int J Mol Sci ; 19(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389847

RESUMO

Most effective nematicides for the control of root-knot nematodes are banned, which demands a better understanding of the plant-nematode interaction. Understanding how gene expression in the nematode-feeding sites relates to morphological features may assist a better characterization of the interaction. However, nematode-induced galls resulting from cell-proliferation and hypertrophy hinders such observation, which would require tissue sectioning or clearing. We demonstrate that a method based on the green auto-fluorescence produced by glutaraldehyde and the tissue-clearing properties of benzyl-alcohol/benzyl-benzoate preserves the structure of the nematode-feeding sites and the plant-nematode interface with unprecedented resolution quality. This allowed us to obtain detailed measurements of the giant cells' area in an Arabidopsis line overexpressing CHITINASE-LIKE-1 (CTL1) from optical sections by confocal microscopy, assigning a role for CTL1 and adding essential data to the scarce information of the role of gene repression in giant cells. Furthermore, subcellular structures and features of the nematodes body and tissues from thick organs formed after different biotic interactions, i.e., galls, syncytia, and nodules, were clearly distinguished without embedding or sectioning in different plant species (Arabidopsis, cucumber or Medicago). The combination of this method with molecular studies will be valuable for a better understanding of the plant-biotic interactions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/parasitologia , Células Gigantes/parasitologia , Glicosídeo Hidrolases/metabolismo , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/parasitologia , Células Gigantes/metabolismo , Glicosídeo Hidrolases/genética , Interações Hospedeiro-Parasita , Medicago/genética , Medicago/metabolismo , Medicago/parasitologia , Microscopia Confocal , Fenótipo , Doenças das Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Tumores de Planta/genética , Tumores de Planta/parasitologia , Plantas Geneticamente Modificadas
15.
J Theor Biol ; 420: 220-231, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28284990

RESUMO

The circadian clock is an endogenous 24 hour rhythm that helps organisms anticipate and adapt to daily and seasonal variations in environment, such as the day/night cycle or changing temperatures. The plant clock is a complex network of transcription factors that regulate each other, forming interlocked feedback loops. Most of its components are light-regulated in some way, making the system highly sensitive to changes in light conditions. Here, we explore the mechanisms by which the plant clock adapts to changing day length. We first present some experimental data illustrating the variety of behaviors found in seedlings exposed to external day/night cycles different from 24h. We then use a mathematical model to characterize the response of the clock to a wide range of external cycle lengths and photoperiods. We show the existence of several domains of periodic entrainment with different ratios between the external cycle length and the period of the clock, and the presence of quasiperiodic and chaotic behaviors outside of the entrainment range. We simulate knockout mutants with impaired clock function and theoretical variants with diminished light sensitivity to highlight the role of a complex network and multiple light inputs in keeping the clock entrained over a wide range of conditions.


Assuntos
Arabidopsis/fisiologia , Relógios Circadianos/genética , Modelos Biológicos , Fotoperíodo , Proteínas de Arabidopsis/fisiologia , Ritmo Circadiano/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Fatores de Transcrição/genética
16.
Front Plant Sci ; 7: 70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904047

RESUMO

An original approach to develop sustainable agriculture with less nitrogen fertilizer inputs is to tackle the cross-talk between nitrogen nutrition and plant growth regulators. In particular the gaseous hormone, ethylene, is a prime target for that purpose. The variation of ethylene production in natural accessions of the model species Arabidopsis thaliana was explored in response to the nitrate supply. Ethylene was measured with a laser-based photoacoustic detector. First, experimental conditions were established with Columbia-0 (Col-0) accession, which was grown in vitro on horizontal plates across a range of five nitrate concentrations (0.5, 1, 2.5, 5, or 10 mM). The concentrations of 1 and 10 mM nitrate were retained for further characterization. Along with a decrease of total dry biomass and higher biomass allocation to the roots, the ethylene production was 50% more important at 1 mM than at 10 mM nitrate. The total transcript levels of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASES (ACS) in roots and those of ACC OXIDASES (ACO) in shoots increased by 100% between the same treatments. This was mainly due to higher transcript levels of ACS6 and of ACO2 and ACO4 respectively. The assumption was that during nitrogen deficiency, the greater biomass allocation in favor of the roots was controlled by ethylene being released in the shoots after conversion of ACC originating from the roots. Second, biomass and ethylene productions were measured in 20 additional accessions. Across all accessions, the total dry biomass and ethylene production were correlated negatively at 1 mM but positively at 10 mM nitrate. Furthermore, polymorphism was surveyed in ACC and ethylene biosynthesis genes and gene products among accessions. Very few substitutions modifying the amino acids properties in conserved motifs of the enzymes were found in the accessions. Natural variation of ethylene production could be further explored to improve Nitrogen Use Efficiency (NUE), in particular by manipulating features like the biomass production and the timing of senescence upon nitrogen limitation.

17.
Front Plant Sci ; 7: 74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904049

RESUMO

The circadian clock is an endogenous timekeeper that allows organisms to anticipate and adapt to the daily variations of their environment. The plant clock is an intricate network of interlocked feedback loops, in which transcription factors regulate each other to generate oscillations with expression peaks at specific times of the day. Over the last decade, mathematical modeling approaches have been used to understand the inner workings of the clock in the model plant Arabidopsis thaliana. Those efforts have produced a number of models of ever increasing complexity. Here, we present an alternative model that combines a low number of equations and parameters, similar to the very earliest models, with the complex network structure found in more recent ones. This simple model describes the temporal evolution of the abundance of eight clock gene mRNA/protein and captures key features of the clock on a qualitative level, namely the entrained and free-running behaviors of the wild type clock, as well as the defects found in knockout mutants (such as altered free-running periods, lack of entrainment, or changes in the expression of other clock genes). Additionally, our model produces complex responses to various light cues, such as extreme photoperiods and non-24 h environmental cycles, and can describe the control of hypocotyl growth by the clock. Our model constitutes a useful tool to probe dynamical properties of the core clock as well as clock-dependent processes.

18.
New Phytol ; 201(3): 810-824, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24134393

RESUMO

The exposure of plants to high concentrations of trace metallic elements such as copper involves a remodeling of the root system, characterized by a primary root growth inhibition and an increase in the lateral root density. These characteristics constitute easy and suitable markers for screening mutants altered in their response to copper excess. A forward genetic approach was undertaken in order to discover novel genetic factors involved in the response to copper excess. A Cu(2+) -sensitive mutant named copper modified resistance1 (cmr1) was isolated and a causative mutation in the CMR1 gene was identified by using positional cloning and next-generation sequencing. CMR1 encodes a plant-specific protein of unknown function. The analysis of the cmr1 mutant indicates that the CMR1 protein is required for optimal growth under normal conditions and has an essential role in the stress response. Impairment of the CMR1 activity alters root growth through aberrant activity of the root meristem, and modifies potassium concentration and hormonal balance (ethylene production and auxin accumulation). Our data support a putative role for CMR1 in cell division regulation and meristem maintenance. Research on the role of CMR1 will contribute to the understanding of the plasticity of plants in response to changing environments.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Estresse Fisiológico/genética , Adaptação Fisiológica/efeitos dos fármacos , Alelos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Simulação por Computador , Cobre/toxicidade , DNA Bacteriano/genética , Genes de Plantas/genética , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Sódio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
19.
Metallomics ; 5(9): 1170-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23420558

RESUMO

Worldwide, nearly two-thirds of the population do not consume the recommended amount of magnesium (Mg) in their diet. Furthermore, low Mg status (hypomagnesaemia) is known to contribute to a number of human chronic disease conditions. Because the principal dietary Mg source is of plant origin, agronomic and genetic biofortification strategies are aimed at improving nutritional Mg content in food crops to overcome this mineral deficiency in humans. This update incorporates the contributions of annotated permeases involved in Mg uptake, storage and recycling with a schematic model of Mg movement at the organ and cellular levels in the model species Arabidopsis thaliana. Furthermore, approaches using mutagenesis or natural ionomic variation to identify loci involved in Mg homeostasis in roots, leaves and seeds will be summarised. A brief overview will be presented on how Arabidopsis research can help to develop strategies for biofortification of crops.


Assuntos
Homeostase/fisiologia , Magnésio/metabolismo , Raízes de Plantas/metabolismo , Plantas Comestíveis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Homeostase/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Plantas Comestíveis/genética , Sementes/genética , Sementes/metabolismo
20.
Mech Dev ; 130(1): 45-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22683348

RESUMO

Nitrogen fertilization increases crop yield but excessive nitrate use can be a major environmental problem due to soil leaching or greenhouse gas emission. Root traits have been seldom considered as selection criteria to improve Nitrogen Use Efficiency of crops, due to the difficulty of measuring root traits under field conditions. Nonetheless, learning about mechanisms of lateral root (LR) growth stimulation or repression by nitrate availability could help to redesign root system architecture (RSA), a strategy aimed at developing plants with a dense and profound root system and with higher N uptake efficiency. Here, we explored the genetic diversity provided by natural populations of the model species Arabidopsis thaliana to identify potentially adaptive differences in biomass production and root morphology in response to nitrate availability. A core collection of 24 accessions that maximizes the genetic diversity within the species and Col-0 (the reference accession) were grown vertically on agar medium at moderate (N+) nitrate level for 6 days and then transferred to the same condition or to low (N-) nitrate concentration for 7 days. There was a major nutritional effect on the shoot biomass and root to shoot biomass ratio. The variation of the root biomass and RSA traits (primary root length, LRs number, LR mean length, total LRs length and LR densities) was primarily genetically determined. Differences in RSA traits between accessions were somewhat more pronounced at N-. Some accessions produced almost no visible LRs (Pyl-1, N13) at N-, while other produced up to a dozen (Kn-0). Taken together our data illustrate that natural variation exists within Arabidopsis for the studied traits. The identification of RSA ideotypes in the N response will facilitate further analysis of quantitative traits for root morphology.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Biomassa , Variação Genética , Nitratos/farmacologia , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...