Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 286: 112192, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33636630

RESUMO

The challenges of soil degradation and climate change have led to the emergence of Conservation Agriculture (CA) as a sustainable alternative to tillage-based agriculture systems. Despite the recognition of positive impacts on soil health, CA adoption in Africa has remained low. Previous soil health studies have mainly focused on 'scientific' measurements, without consideration of local knowledge, which influences how farmers interpret CA impacts and future land management decisions. This study, based in Malawi, aims to 1) combine local knowledge and conventional soil science approaches to develop a contextualised understanding of the impact of CA on soil health; and 2) understand how an integrated approach can contribute to explaining farmer decision-making on land management. Key farmers' indicators of soil health were crop performance, soil consistence, moisture content, erosion, colour, and structure. These local indicators were consistent with conventional soil health indicators. By combining farmers' observations with soil measurements, we observed that CA improved soil structure, moisture (Mwansambo 7.54%-38.15% lower for CP; Lemu 1.57%-47.39% lower for CP) and infiltration (Lemu CAM/CAML 0.15 cms-1, CP 0.09 cms-1; Mwansambo CP/CAM 0.14 cms-1, CAML 0.18 cms-1). In the conventional practice, farmers perceived ridges to redistribute nutrients, which corresponded with recorded higher exchangeable ammonium (Lemu CP 76.0 mgkg -1, CAM 49.4 mgkg -1, CAML 51.7 mgkg -1), nitrate/nitrite values (Mwansambo CP 200.7 mgkg -1, CAM 171.9 mgkg -1, CAML 103.3 mgkg -1). This perception contributes to the popularity of ridges, despite the higher yield measurements under CA (Mwansambo CP 3225 kgha-1, CAML 5067 kgha-1, CAM 5160 kgha-1; Lemu CP 2886 kgha-1, CAM 2872 kgha-1, CAML 3454 kgha-1 ). The perceived carbon benefits of residues and ridge preference has promoted burying residues in ridges. Integrated approaches contribute to more nuanced and localized perceptions about land management. We propose that the stepwise integrated soil assessment framework developed in this study can be applied more widely in understanding the role of soil health in farmer-decision making, providing a learning process for downscaling technologies and widening the evidence base on sustainable land management practices.


Assuntos
Conservação dos Recursos Naturais , Solo , Agricultura , Mudança Climática , Fazendeiros , Malaui
2.
Soil Tillage Res ; 201: 104639, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32624633

RESUMO

Sub-Saharan Africa (SSA) faces climate change and food insecurity challenges, which require action to create resilient farming systems. Conservation agriculture (CA) is widely promoted across SSA but the impacts on key soil physical properties and functions such as soil structure and hydraulic properties that govern water storage and transmission are not well understood. The aim of this study was to assess the impacts of long term (10-12 years) maize-based CA on soil hydraulic conductivity, water retention and pore size distribution. Root zone (0-30 cm depth) soil total porosity, pore size distribution, saturated hydraulic conductivity (Ksat) and plant available water capacity (PAWC) of conventional maize monocrop farming systems (CP) are compared with those of adjacent CA trials with either sole maize or maize intercrop/rotation with cowpea (Vigna unguiculata L.), pigeon pea (Cajanus cajan L.) or velvet bean (Mucuna pruriens L) in trial locations across central and southern Malawi. Results show that maize-based CA systems result in significant changes to soil hydraulic properties that correlate with improved soil structure. Results demonstrate increases of 5-15 % in total porosity, 0.06-0.22 cm/min in Ksat, 3-7 % in fine pores for water storage and 3-6 % in PAWC. Maize monocrop CA had similar effect on the hydraulic properties as the maize-legume associations. The values of Ksat for CA systems were within optimum levels (0.03-0.3 cm/min) whereas PAWC was below optimum (<20 %). There was no significant build-up in soil organic matter (OM) in the CA systems. The results lead to a recommendation that crop residue management should be more pro-actively pursued in CA guidance from agricultural extension staff to increase soil OM levels, increase yields and enhance climate resilience of sub-Saharan African farming systems.

3.
Nat Ecol Evol ; 2(9): 1443-1448, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013133

RESUMO

Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.


Assuntos
Mudança Climática , Regiões Árticas , Ecossistema , Viés de Seleção , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...