Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 144(20): 204903, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27250327

RESUMO

Using simultaneous neutron, fluorescence, and optical brightfield transmission imaging, the diffusion of solvent, fluorescent dyes, and macromolecules into a crosslinked polyacrylamide hydrogel was investigated. This novel combination of different imaging techniques enables us to distinguish the movements of the solvent and fluorescent molecules. Additionally, the swelling or deswelling of the hydrogels can be monitored. From the sequence of images, dye and solvent concentrations were extracted spatially and temporally resolved. Diffusion equations and different boundary conditions, represented by different models, were used to quantitatively analyze the temporal evolution of these concentration profiles and to determine the diffusion coefficients of solvent and solutes. Solute size and network properties were varied and their effect was investigated. Increasing the crosslinking ratio or partially drying the hydrogel was found to hinder solute diffusion due to the reduced pore size. By contrast, solvent diffusion seemed to be slightly faster if the hydrogel was only partially swollen and hence solvent uptake enhanced.


Assuntos
Hidrogéis/química , Modelos Químicos , Difusão , Tamanho da Partícula , Solventes/química
2.
Phys Chem Chem Phys ; 18(18): 12860-76, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27104814

RESUMO

To gain insight into the fundamental processes determining the motion of macromolecules in polymeric matrices, the dynamical hindrance of polymeric dextran molecules diffusing as probe through a polyacrylamide hydrogel is systematically explored. Three complementary experimental methods combined with Brownian dynamics simulations are used to study a broad range of dextran molecular weights and salt concentrations. While multi-parameter fluorescence image spectroscopy (MFIS) is applied to investigate the local diffusion of single molecules on a microscopic length scale inside the hydrogel, a macroscopic transmission imaging (MTI) fluorescence technique and nuclear magnetic resonance (NMR) are used to study the collective motion of dextrans on the macroscopic scale. These fundamentally different experimental methods, probing different length scales of the system, yield long-time diffusion coefficients for the dextran molecules which agree quantitatively. The measured diffusion coefficients decay markedly with increasing molecular weight of the dextran and fall onto a master curve. The observed trends of the hindrance factors are consistent with Brownian dynamics simulations. The simulations also allow us to estimate the mean pore size for the herein investigated experimental conditions. In addition to the diffusing molecules, MFIS detects temporarily trapped molecules inside the matrix with diffusion times above 10 ms, which is also confirmed by anisotropy analysis. The fraction of bound molecules depends on the ionic strength of the solution and the charge of the dye. Using fluorescence intensity analysis, also MTI confirms the observation of the interaction of dextrans with the hydrogel. Moreover, pixelwise analysis permits to show significant heterogeneity of the gel on the microscopic scale.

3.
Phys Chem Chem Phys ; 18(9): 6458-64, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26862596

RESUMO

The migration of water into a casein film was probed with neutron radiography. From the neutron transmission images, the evolution of the water saturation profiles was extracted. The results indicate that the water influx is dominated by imbibition but also contains a diffusional component. The time dependence of the water ingress was quantified using a diffusion-like equation previously also applied to imbibition. A water transport coefficient D = 0.9 × 10(-9) m(2) s(-1) was found. This value and direct observation of the images indicate that the time taken for a typical adhesive casein-based layer to become saturated with water is of the order of hours.

4.
Rev Sci Instrum ; 86(9): 093706, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26429447

RESUMO

An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA