Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pain ; 156(12): 2514-2520, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26270583

RESUMO

Loss of calcineurin (protein phosphatase 3) activity and protein content in the postsynaptic density (PSD) of spinal dorsal horn neurons was associated with pain behavior after chronic constriction injury (CCI) of the rat sciatic nerve, and intrathecal administration of the phosphatase provided prolonged analgesia (Miletic et al. 2013). In this study, we examined whether one consequence of the loss of calcineurin was the persistent phosphorylation of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid (AMPAR) receptors in the PSD. This would allow continual activation of AMPAR receptors at the synapse to help maintain a long-lasting enhancement of synaptic function, ie, neuropathic pain. We also investigated if the phosphorylation was mediated by protein kinase A (PKA), protein kinase C gamma (PKCγ), or calcium-calmodulin dependent kinase II (CaMKII), and if the prolonged calcineurin analgesia was associated with GluA1 dephosphorylation. Mechanical thresholds and thermal latencies were obtained before CCI. Seven days later, the behavioral testing was repeated before saline, calcineurin, or the specific peptide inhibitors of PKA (PKI-tide), PKCγ (PKC 19-31), or CaMKII (autocamtide-2-related inhibitory peptide) were injected intrathecally. The behavior was retested before the animals were euthanized and their PSD isolated. All CCI animals developed mechanical and thermal hypersensitivity. This was associated with phosphorylation of GluA1 in the ipsilateral PSD at Ser831 (but not Ser845) by PKCγ and not by PKA or CaMKII. Intrathecal treatment with calcineurin provided prolonged analgesia, and this was accompanied by GluA1 dephosphorylation. Therapy with calcineurin may prove useful in the prolonged clinical management of well-established neuropathic pain.


Assuntos
Analgesia , Calcineurina/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neuralgia/metabolismo , Densidade Pós-Sináptica/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores de AMPA/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Injeções Espinhais , Masculino , Fosforilação , Densidade Pós-Sináptica/metabolismo , Células do Corno Posterior/metabolismo , Proteína Quinase C/antagonistas & inibidores , Ratos , Nervo Isquiático/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...