Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol Regul ; 75: 100658, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31727590

RESUMO

Three dimensional (3D) bioprinting of multiple cell types within optimised extracellular matrices has the potential to more closely model the 3D environment of human physiology and disease than current alternatives. In this study, we used a multi-nozzle extrusion bioprinter to establish models of glioblastoma made up of cancer and stromal cells printed within matrices comprised of alginate modified with RGDS cell adhesion peptides, hyaluronic acid and collagen-1. Methods were developed using U87MG glioblastoma cells and MM6 monocyte/macrophages, whilst more disease relevant constructs contained glioblastoma stem cells (GSCs), co-printed with glioma associated stromal cells (GASCs) and microglia. Printing parameters were optimised to promote cell-cell interaction, avoiding the 'caging in' of cells due to overly dense cross-linking. Such printing had a negligible effect on cell viability, and cells retained robust metabolic activity and proliferation. Alginate gels allowed the rapid recovery of printed cell protein and RNA, and fluorescent reporters provided analysis of protein kinase activation at the single cell level within printed constructs. GSCs showed more resistance to chemotherapeutic drugs in 3D printed tumour constructs compared to 2D monolayer cultures, reflecting the clinical situation. In summary, a novel 3D bioprinting strategy is developed which allows control over the spatial organisation of tumour constructs for pre-clinical drug sensitivity testing and studies of the tumour microenvironment.


Assuntos
Bioimpressão , Comunicação Celular , Glioblastoma/metabolismo , Macrófagos/metabolismo , Modelos Biológicos , Monócitos/metabolismo , Impressão Tridimensional , Linhagem Celular Tumoral , Técnicas de Cocultura , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Macrófagos/patologia , Monócitos/patologia , Alicerces Teciduais/química
2.
EMBO Mol Med ; 10(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29930174

RESUMO

The adaptive cellular response to low oxygen tensions is mediated by the hypoxia-inducible factors (HIFs), a family of heterodimeric transcription factors composed of HIF-α and HIF-ß subunits. Prolonged HIF expression is a key contributor to cellular transformation, tumorigenesis and metastasis. As such, HIF degradation under hypoxic conditions is an essential homeostatic and tumour-suppressive mechanism. LIMD1 complexes with PHD2 and VHL in physiological oxygen levels (normoxia) to facilitate proteasomal degradation of the HIF-α subunit. Here, we identify LIMD1 as a HIF-1 target gene, which mediates a previously uncharacterised, negative regulatory feedback mechanism for hypoxic HIF-α degradation by modulating PHD2-LIMD1-VHL complex formation. Hypoxic induction of LIMD1 expression results in increased HIF-α protein degradation, inhibiting HIF-1 target gene expression, tumour growth and vascularisation. Furthermore, we report that copy number variation at the LIMD1 locus occurs in 47.1% of lung adenocarcinoma patients, correlates with enhanced expression of a HIF target gene signature and is a negative prognostic indicator. Taken together, our data open a new field of research into the aetiology, diagnosis and prognosis of LIMD1-negative lung cancers.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Neoplasias Pulmonares/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Retroalimentação Fisiológica , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Fator A de Crescimento do Endotélio Vascular/genética
3.
Adv Biol Regul ; 65: 5-15, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28712664

RESUMO

Glycogen Synthase Kinase-3 (GSK3 or GSK-3) is a promiscuous protein kinase and its phosphorylation of its diverse substrates has major influences on many areas of physiology and pathology, including cellular metabolism, lineage commitment and neuroscience. GSK3 was one of the first identified substrates of the heavily studied oncogenic kinase AKT, phosphorylation by which inhibits GSK3 activity via the formation of an autoinhibitory pseudosubstrate sequence. This has led to investigation of the role of GSK3 inhibition as a key component of the cellular responses to growth factors and insulin, which stimulate the class I PI 3-Kinases and in turn AKT activity and GSK3 phosphorylation. GSK3 has been shown to phosphorylate several upstream and downstream components of the PI3K/AKT/mTOR signalling network, including AKT itself, RICTOR, TSC1 and 2, PTEN and IRS1 and 2, with the potential to apply feedback control within the network. However, it has been clear for some time that functionally distinct, insulated pools of GSK3 exist which are regulated independently, so that for some GSK3 substrates such as ß-catenin, phosphorylation by GSK3 is not controlled by input from PI3K and AKT. Instead, as almost all GSK3 substrates require a priming phosphorylated residue to be 4 amino acids C-terminal to the Ser/Thr phosphorylated by GSK3, the predominant form of regulation of the activity of GSK3 often appears to be through control over these priming events, specific to individual substrates. Therefore, a major role of GSK3 can be viewed as an amplifier of the electrostatic effects on protein function which are caused by these priming phosphorylation events. Here we discuss these different aspects to GSK3 regulation and function, and the functions of GSK3 as it integrates with signalling through the PI3K-AKT-mTOR signalling axis.


Assuntos
Retroalimentação Fisiológica , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Clin Sci (Lond) ; 131(3): 197-210, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057891

RESUMO

Loss of function of the PTEN tumour suppressor, resulting in dysregulated activation of the phosphoinositide 3-kinase (PI3K) signalling network, is recognized as one of the most common driving events in prostate cancer development. The observed mechanisms of PTEN loss are diverse, but both homozygous and heterozygous genomic deletions including PTEN are frequent, and often accompanied by loss of detectable protein as assessed by immunohistochemistry (IHC). The occurrence of PTEN loss is highest in aggressive metastatic disease and this has driven the development of PTEN as a prognostic biomarker, either alone or in combination with other factors, to distinguish indolent tumours from those likely to progress. Here, we discuss these factors and the consequences of PTEN loss, in the context of its role as a lipid phosphatase, as well as current efforts to use available inhibitors of specific components of the PI3K/PTEN/TOR signalling network in prostate cancer treatment.


Assuntos
Carcinoma/etiologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/etiologia , Animais , Carcinoma/diagnóstico , Carcinoma/metabolismo , Humanos , Masculino , Terapia de Alvo Molecular , Mutação , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Transdução de Sinais
5.
Biochem Soc Trans ; 44(1): 273-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26862215

RESUMO

The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase dephosphorylates PIP3, the lipid product of the class I PI 3-kinases, and suppresses the growth and proliferation of many cell types. It has been heavily studied, in large part due to its status as a tumour suppressor, the loss of function of which is observed through diverse mechanisms in many tumour types. Here we present a concise review of our understanding of the PTEN protein and highlight recent advances, particularly in our understanding of its localization and regulation by ubiquitination and SUMOylation.


Assuntos
Células/enzimologia , PTEN Fosfo-Hidrolase/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Transporte Proteico , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina/metabolismo
6.
Biofabrication ; 7(4): 045012, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689257

RESUMO

Different bioprinting techniques have been used to produce cell-laden alginate hydrogel structures, however these approaches have been limited to 2D or simple three-dimension (3D) structures. In this study, a new extrusion based bioprinting technique was developed to produce more complex alginate hydrogel structures. This was achieved by dividing the alginate hydrogel cross-linking process into three stages: primary calcium ion cross-linking for printability of the gel, secondary calcium cross-linking for rigidity of the alginate hydrogel immediately after printing and tertiary barium ion cross-linking for long-term stability of the alginate hydrogel in culture medium. Simple 3D structures including tubes were first printed to ensure the feasibility of the bioprinting technique and then complex 3D structures such as branched vascular structures were successfully printed. The static stiffness of the alginate hydrogel after printing was 20.18 ± 1.62 KPa which was rigid enough to sustain the integrity of the complex 3D alginate hydrogel structure during the printing. The addition of 60 mM barium chloride was found to significantly extend the stability of the cross-linked alginate hydrogel from 3 d to beyond 11 d without compromising the cellular viability. The results based on cell bioprinting suggested that viability of U87-MG cells was 93 ± 0.9% immediately after bioprinting and cell viability maintained above 88% ± 4.3% in the alginate hydrogel over the period of 11 d.


Assuntos
Alginatos/farmacologia , Bioimpressão/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Impressão Tridimensional , Alginatos/química , Bário/análise , Compostos de Bário/farmacologia , Cálcio/análise , Cloreto de Cálcio/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cloretos/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Módulo de Elasticidade/efeitos dos fármacos , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Viscosidade
7.
Adv Biol Regul ; 59: 53-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26159297

RESUMO

In many human cell types, the class I phosphoinositide 3-kinases play key roles in the control of diverse cellular processes including growth, proliferation, survival and polarity. This is achieved through their activation by many cell surface receptors, leading to the synthesis of the phosphoinositide lipid signal, PIP3, which in turn influences the function of numerous direct PIP3-binding proteins. Here we review PI3K pathway biology and analyse the evolutionary distribution of its components and their functions. The broad phylogenetic distribution of class I PI3Ks in metazoa, amoebozoa and choannoflagellates, implies that these enzymes evolved in single celled organisms and were later co-opted into metazoan intercellular communication. A similar distribution is evident for the AKT and Cytohesin groups of downstream PIP3-binding proteins, with other effectors and pathway components appearing to evolve later. The genomic and functional phylogeny of regulatory systems such as the PI3K pathway provides a framework to improve our understanding of the mechanisms by which key cellular processes are controlled in humans.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Animais , Evolução Molecular , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...