Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemistryOpen ; 13(4): e202300282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471961

RESUMO

Perfluorodecalin (PFD)-filled capsules have been studied for over 15 years as artificial oxygen carriers. However, none of these capsules combines good biocompatibility, good mechanical stability and dispersion stability. Here we propose to use synthetic triblock peptides containing a central block of cysteine units as a cross-linking shell material for capsules with both good biocompatibility and stability. Together with outer aspartate units and inner phenylalanine units, the resulting amphiphilic triblock peptides can encapsulate PFD efficiently to prepare capsules with a suitable diameter, a certain mechanical strength, a large diffusion constant, fast gas exchange rates, and little cytotoxicity. Given the above advantages, these PFD-filled peptide capsules are very promising as potential artificial oxygen carriers.


Assuntos
Fluorocarbonos , Oxigênio , Peptídeos , Cápsulas
2.
Appl Spectrosc ; 78(6): 616-626, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529545

RESUMO

Pesticides play an important role in conventional agriculture. Yet, their harmful effects on the environment are becoming increasingly apparent. The occurrence of pesticides is hence being monitored worldwide. For fast, easy, yet sensitive identification, surface-enhanced Raman spectroscopy (SERS) is a powerful tool. In this study, a method is introduced that may be amended to in-field detection of pesticides. Gold and silver nanoparticles were synthesized, size-tailored, and characterized. The herbicide paraquat and the fungicide thiram served as model compounds. The preparation yielded reproducible SERS spectra. Using quantum chemical computation, Raman and SERS spectra were calculated and analyzed. The interpretation of vibrational modes in combination with SERS enhancement and attenuation allowed us to identify compound-specific bands. The assignment was interpreted in terms of the orientation of paraquat and thiram on the gold and silver nanoparticle surfaces. Paraquat preferred a co-planar arrangement parallel to the gold nanoparticle surface and a head-on orientation on the silver nanoparticle. For thiram, breaking of the disulfide bond was recognized, such that interaction with the surface occurred via the sulfur atoms. Successful detection of the pesticides after recollection from vegetable leaves demonstrated the method's applicability for pesticide identification.

3.
Environ Sci Pollut Res Int ; 30(18): 53128-53139, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36853537

RESUMO

Ozonation is a powerful technique to remove micropollutants from wastewater. As chemical oxidation of wastewater comes with the formation of varying, possibly persistent and toxic by-products, post-treatment of the ozonated effluent is routinely suggested. This study explored an enzymatic treatment of ozonation products using the laccase from Trametes versicolor. A high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis revealed that the major by-products were effectively degraded by the enzymatic post-treatment. The enzymatic removal of the by-products reduced the ecotoxicity of the ozonation effluent, as monitored by the inhibition of Aliivibrio fischeri. The ecotoxicity was more effectively reduced by enzymatic post-oxidation at pH 7 than at the activity maximum of the laccase at pH 5. A mechanistic HPLC-HRMS and UV/Vis spectroscopic analysis revealed that acidic conditions favored rapid conversion of the phenolic by-products to dead-end products in the absence of nucleophiles. In contrast, the polymerization to harmless insoluble polymers was favored at neutral conditions. Hence, coupling ozonation with laccase-catalyzed post-oxidation at neutral conditions, which are present in wastewater effluents, is suggested as a new resource-efficient method to remove persistent micropollutants while excluding the emission of potentially harmful by-products.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Acetaminofen , Lacase , Trametes , Ozônio/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
4.
Appl Spectrosc ; 76(10): 1222-1233, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35412371

RESUMO

Surface enhanced Raman spectroscopy (SERS) has evolved into a powerful analytical method in food and environmental analytical sciences due to its high sensitivity. Pesticide analysis is a major discipline therein. Using sustainable materials has become increasingly important to adhere to Green Chemistry principles. Hence, the green textiles poly-(L-lactic acid) (PLA) and the mixed fabric polyethylene terephthalate polyamide (PET/PA) were investigated for their applicability as solid supports for gold nanoparticles to yield SERS substrates. Gold nanoparticle solutions and green textile supports were prepared after preparation optimization. Particle size, dispersity, and particle distribution over the textiles were characterized by absorption spectroscopy and transmission electron imaging. The performance of the SERS substrates was tested using the three pesticides imidacloprid, paraquat, and thiram and a handheld Raman spectrometer with a laser wavelength of 785 nm. The resulting SERS spectra possessed an intra-substrate variation of 7-8% in terms of the residual standard deviation. The inter-substrate variations amounted to 15% for PET/PA and to 27% for PLA. Substrate background signals were smaller with PLA but more enhanced through PET/PA. The pesticides could be detected at 1 pg on PET/PA and at 3 ng on PLA. Hence, PET/PA woven textile soaked with gold nanoparticle solution provides green SERS substrates and might prove, in combination with fieldable Raman spectrometers, suitable for in-field analytics for pesticide identification.


Assuntos
Nanopartículas Metálicas , Praguicidas , Ouro/química , Ácido Láctico , Nanopartículas Metálicas/química , Nylons , Paraquat , Praguicidas/análise , Polietilenotereftalatos , Análise Espectral Raman/métodos , Têxteis , Tiram/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...