Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 174: 310-319, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086295

RESUMO

Poultry litter is a valuable source of nutrients for crop production, but its use in agriculture can lead to environmental and public health concerns due to the presence of pollutants, antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs). We compared the effect of different on-farm poultry litter composting processes on physicochemical, biological, and toxicological parameters, as well as on the occurrence of antibiotics and resistant Escherichia coli. The composting treatments consisted of passively-aerated piles C:N = 19 (PAC19), mechanically-aerated piles C:N = 19 (MAC19), and mechanically-aerated piles C:N = 30 (MAC30). Poultry litter composting led to a significant reduction of antibiotic residues, enteroparasites and antibiotic resistant E. coli. The conditions of the process, such as extra C source and mechanical aeration influence the quality of the final product. MAC19 is a low-cost effective method to reduce the potential risks associated with poultry litter use in agriculture and produce good quality compost.


Assuntos
Compostagem , Animais , Aves Domésticas , Fazendas , Escherichia coli/genética , Antibacterianos/farmacologia , Antagonistas de Receptores de Angiotensina , Esterco/microbiologia , Inibidores da Enzima Conversora de Angiotensina
2.
World J Microbiol Biotechnol ; 38(6): 98, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35478266

RESUMO

Glyphosate (N-(phosphonomethyl)glycine) has emerged as the top-selling herbicide worldwide because of its versatility in controlling annual and perennial weeds and the extensive use of glyphosate-resistant crops. Concerns related to the widespread use of glyphosate and its ubiquitous presence in the environment has led to a large number of studies and reviews, which examined the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA) in the environment. Because the biological breakdown of glyphosate is most likely the main elimination process, the biodegradation of glyphosate has also been the object of abundant experimental work. Importantly, glyphosate biodegradation in aquatic and soil ecosystems is affected not only by the composition and the activity of microbial communities, but also by the physical environment. However, the interplay between microbiomes and glyphosate biodegradation in edaphic and aquatic environments has rarely been considered before. The proposed minireview aims at filling this gap. We summarize the most recent work exploring glyphosate biodegradation in natural aquatic biofilms, the biological, chemical and physical factors and processes playing on the adsorption, transport and biodegradation of glyphosate at different levels of soil organization and under different agricultural managements, and its impact on soil microbial communities.


Assuntos
Herbicidas , Microbiota , Glicina/análogos & derivados , Solo/química , Glifosato
3.
Plants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34579336

RESUMO

Low arbuscular-mycorrhizal (AM) sporulation in arid field soils limits our knowledge of indigenous species when diversity studies are based only on spore morphology. Our aim was to use different approaches (i.e., spore morphological approach and PCR-SSCP (single-strand-conformation-polymorphism) analysis after trap plant multiplication strategies to improve the knowledge of the current richness of glomalean AM fungi (Glomerales; Glomeromycota) from the Argentine Puna. Indigenous propagules from two pristine sites at 3870 and 3370 m of elevation were multiplied using different host plants; propagation periods (2-6 months), and subculture cycles (1; 2; or 3) from 5 to 13 months. The propagule multiplication experiment allowed the detection of different glomoid taxa of Funneliformis spp. and Rhizoglomus spp., which were considered cryptic species since they had never been found in Puna soils before. On the other hand; almost all the generalist species previously described were recovered from cultures; except for Glomus ambisporum. Both plant host selection and culture times are critical for Glomerales multiplication. The SSCP analysis complemented the morphological approach and showed a high variability of Glomus at each site; revealing the presence of Funneliformis mosseae. This study demonstrates that AMF trap culture (TC) is a useful strategy for improving the analysis of AM fungal diversity/richness in the Argentinean highlands.

4.
Curr Microbiol ; 78(5): 1991-2000, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33797566

RESUMO

Despite the intensive use of glyphosate (GP) and its ubiquitous presence in the environment, studies addressing the presence of microbial genes involved in glyphosate degradation in natural conditions are scarce. Based on the agronomical importance of Bradyrhizobium genus and its metabolic versatility, we tested the hypothesis that species or genotypes of Bradyrhizobium could be a proxy for GP degrader potential in soil. A quantitative PCR assay was designed to target a specific region of the glycine oxidase gene (thiO), involved in the oxidation of glyphosate to AMPA, from known sequences of Bradyrhizobium species. The abundance of the thiO gene was determined in response to herbicide application in soils with different GP exposure history both under field and microcosm conditions. The gene coding for RNA polymerase subunitB (rpoB) was used as a reference for the abundance of total Bradyrhizobia. The assay using the designed primers was linear over a very large concentration range of the target and showed high efficiency and specificity. In a field experiment, there was a differential response related to the history of glyphosate use and the native Bradyrhizobium genotypes. In a soil without previous exposure to herbicides, thiO gene increased over time after glyphosate application with most genotypes belonging to the B. jicamae and B. elkanni supergroups. Conversely, in an agricultural soil with more than 10 years of continuous glyphosate application, the abundance of thiO gene decreased and most genotypes belonged to B. japonicum supergroup. In a microcosm assay, the amount of herbicide degraded after a single application was positively correlated to the number of thiO copies in different agricultural soils from the Pampean Region. Our results suggest that Bradyrhizobium species are differently involved in glyphosate degradation, denoting the existence of metabolically versatile microorganisms which can be explored for sustainable agriculture practices. The relationship between the abundance of thiO gene and the GP degraded in soil point to the use of thiO gene as a proxy for GP degradation in soil.


Assuntos
Bradyrhizobium , Herbicidas , Poluentes do Solo , Aminoácido Oxirredutases , Bradyrhizobium/genética , Glicina/análogos & derivados , Solo , Poluentes do Solo/análise , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...