Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytotechnology ; 75(4): 335-348, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37389127

RESUMO

The plasticizer di (2-ethylhexyl) phthalate (DEHP) inhibits differentiation, impairs glucose metabolism, and decreases mitochondrial function in murine muscle satellite cells; however, if these effects are translated to human cells is unknown. The goal of this study was to evaluate changes in morphology and proliferation of primary human skeletal muscle cells exposed to DEHP. Rectus abdominis muscle samples were obtained from healthy women undergoing programed cesarean surgery. Skeletal muscle cells were isolated and grown under standard primary culture conditions, generating two independent sample groups of 25 subcultures each. Cells from the first group were exposed to 1 mM DEHP for 13 days and monitored for changes in cell morphology, satellite cell frequency and total cell abundance, while the second group remained untreated (control). Differences between treated and untreated groups were compared using generalized linear mixed models (GLMM). Cell membrane and nuclear envelope boundary alterations, loss of cell volume and presence of stress bodies were observed in DEHP-treated cultures. DEHP-treated cultures also showed a significant reduction in satellite cell frequency compared to controls. Exposure to DEHP reduced human skeletal muscle cell abundance. Statistical differences were found between the GLMM slopes, suggesting that exposure to DEHP reduced growth rate. These results suggest that exposure to DEHP inhibits human skeletal muscle cell proliferation, as evidenced by reduced cell abundance, potentially compromising long-term culture viability. Therefore, DEHP induces human skeletal muscle cell deterioration potentially inducing an inhibitory effect of myogenesis by depleting satellite cells.

2.
Anat Rec (Hoboken) ; 306(10): 2597-2609, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36794994

RESUMO

The fossil record of pinnipeds documents a suite of morphological changes that facilitate their ecological transition from a terrestrial to an aquatic lifestyle. Among these is the loss of the tribosphenic molar and the behavior typically associated with it in mammals: mastication. Instead, modern pinnipeds exhibit a broad range of feeding strategies that facilitate their distinct aquatic ecologies. Here, we examine the feeding morphology of two species of pinnipeds with disparate feeding ecologies: Zalophus californianus, a specialized raptorial biter, and Mirounga angustirostris, a suction specialist. Specifically, we test whether the morphology of the lower jaws facilitates trophic plasticity in feeding for either of these species. We used finite element analysis (FEA) to simulate the stresses during the opening and closing of the lower jaws in these species to explore the mechanical limits of their feeding ecology. Our simulations demonstrate that both jaws are highly resistant to the tensile stresses experienced during feeding. The lower jaws of Z. californianus experienced the maximum stress at the articular condyle and the base of the coronoid process. The lower jaws of M. angustirostris experienced the maximum stress at the angular process and were more evenly distributed throughout the body of the mandible. Surprisingly, the lower jaws of M. angustirostris were even more resistant to the stresses experienced during feeding than those of Z. californianus. Thus, we conclude that the superlative trophic plasticity of Z. californianus is driven by other factors unrelated to the mandible's tensile resistance to stress during feeding.


Assuntos
Caniformia , Leões-Marinhos , Focas Verdadeiras , Animais , Arcada Osseodentária , Mandíbula
3.
Environ Res ; 206: 112636, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973198

RESUMO

BACKGROUND: Phthalates, plasticizers that are widely used in consumer products including toys, cosmetics, and food containers, have negative effects in liver, kidney, brain, lung and reproductive system of humans and other mammals. OBJECTIVES: To summarize, describe and discuss the available information on the effects of phthalate exposure in mammals, with emphasis on oxidative stress, and to suggest potential biomarkers of the health risks associated with phthalate exposure. METHODS: An assessment of scientific journals was performed using the PRISMA model for systematic reviews. Manuscripts reporting effects of phthalate exposure on mammalian health published in the last decade were selected according to originality, content, and association to health hazards. RESULTS AND DISCUSSION: We identified 25 peer-reviewed articles published between January 1st, 2010 and June 1st, 2021 that fit the aims and selection criteria. Phthalates induce oxidative stress and cell degenerative processes by increasing intracellular reactive species. Antioxidant cytoprotective systems decrease with time of exposure; conversely, oxidative damage markers, including thiobarbituric acid-reactive substances (TBARS), 8-hydroxy-2'-desoxyguanosine (8-OHdG) and malondialdehyde (MDA), increase. Phthalates were associated with endocrine system disfunction, metabolic disorders, infertility, nonviable pregnancy, cell degeneration, growth impairment, tumor development, and cognitive disorders. Phthalates can also aggravate health conditions such as asthma, hepatitis, diabetes, allergies, chronic liver and kidney diseases. Among humans, the more vulnerable subjects to phthalate exposure effects were children and individuals with a prior health condition. CONCLUSION: Chronic exposure to phthalates induces oxidative stress in mammals with concomitant adverse effects in reproductive, respiratory, endocrine, circulatory, and central nervous systems in both in vitro and in vivo trials. Oxidative damage markers and phthalate metabolites levels were the most common biomarkers of phthalate exposure effects. Studies in free-ranging and wild mammals are nil. Further studies on the pathways that lead to metabolic disruption are needed to identify potential treatments against phthalate-induced detrimental effects.


Assuntos
Ácidos Ftálicos , Animais , Biomarcadores/metabolismo , Criança , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Mamíferos , Estresse Oxidativo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/toxicidade , Gravidez
4.
Environ Geochem Health ; 41(3): 1075-1089, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30259255

RESUMO

Trace element (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd, As, Hg) concentrations were assessed in marine organisms (n = 52) sampled from the Magdalena Bay lagoon complex in Baja California Sur, Mexico, a pristine marine environment. The overall trend of metal concentrations (dry weight) in the organisms was found to be Fe > Zn > Cd > Cu > Mn > Pb > As > Hg > Ni > Cr > Co. Bivalve mollusks (53.83 mg kg-1) contained twofold higher levels of metals than the finfishes (20.77 mg kg-1). Calculated BioConcentration Factor (BCF) values showed that dissolved Mn is readily bioavailable to the organisms, whereas Biota Sediment Accumulation Factor (BSAF) indicated high values for Zn, Cu and Cd. Cd and As levels were observed to be increasing with the trophic levels. Toxic elements, namely Pb, Cd and As in the studied fish species were found to be higher than the values recommended for human seafood consumption. The study provides a comprehensive baseline report on trace element bioaccumulation in several marine organisms that will aid in developing effective conservation strategies of the highly biodiverse lagoon complex.


Assuntos
Peixes , Metais/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos , Baías , Crustáceos/química , Monitoramento Ambiental , Cadeia Alimentar , Contaminação de Alimentos/análise , Mercúrio/análise , México , Moluscos/química , Oceano Pacífico
5.
PLoS One ; 13(10): e0204641, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30304057

RESUMO

Pinniped vibrissae provide information on changes in diet at seasonal and annual scales; however, species-specific growth patterns must first be determined in order to interpret these data. In this study, a simple linear model was used to estimate the growth rate of vibrissae from adult female California sea lions (Zalophus californianus) from San Esteban Island in the Gulf of California, Mexico. The δ15N and δ13C values do not display a marked oscillatory pattern that would permit direct determination of the time period contained in each vibrissa; thus, time (age) was calculated in two ways: 1) based on the correlation between the observed number of peaks (Fourier series) in the δ15N profile and the length of each vibrissa, and 2) through direct comparison with the observed number of peaks in the δ15N profile. Cross-correlation confirmed that the two peaks in the δ15N profile reflected the two peaks in the chlorophyll-a concentration recorded annually around the island. The mean growth rate obtained from the correlation was 0.08 ± 0.01 mm d-1, while that calculated based on the observed number of peaks was 0.10 ± 0.05 mm d-1. Both are consistent with the rates reported for adult females of other otariid species (0.07 to 0.11 mm d-1). Vibrissa growth rates vary by individual, age, sex, and species; moreover, small differences in the growth rate can result in significant differences over the time periods represented by the isotopic signal. Thus, it is important to assess this parameter on a species-by-species basis.


Assuntos
Isótopos de Carbono/química , Isótopos de Nitrogênio/química , Leões-Marinhos/fisiologia , Animais , California , Dieta , Feminino , Ilhas , México
6.
Artigo em Inglês | MEDLINE | ID: mdl-26506131

RESUMO

In mammalian tissues under hypoxic conditions, ATP degradation results in accumulation of purine metabolites. During exercise, muscle energetic demand increases and oxygen consumption can exceed its supply. During breath-hold diving, oxygen supply is reduced and, although oxygen utilization is regulated by bradycardia (low heart rate) and peripheral vasoconstriction, tissues with low blood flow (ischemia) may become hypoxic. The goal of this study was to evaluate potential differences in the circulating levels of purine metabolism components between diving and exercise in bottlenose dolphins (Tursiops truncatus). Blood samples were taken from captive dolphins following a swimming routine (n=8) and after a 2min dive (n=8). Activity of enzymes involved in purine metabolism (hypoxanthine guanine phosphoribosyl transferase (HGPRT), inosine monophosphate deshydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP)), and purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD(+)), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, guanosine diphosphate (GDP), guanosine triphosphate (GTP)) concentrations were quantified in erythrocyte and plasma samples. Enzymatic activity and purine metabolite concentrations involved in purine synthesis and degradation, were not significantly different between diving and exercise. Plasma adenosine concentration was higher after diving than exercise (p=0.03); this may be related to dive-induced ischemia. In erythrocytes, HGPRT activity was higher after diving than exercise (p=0.007), suggesting an increased capacity for purine recycling and ATP synthesis from IMP in ischemic tissues of bottlenose dolphins during diving. Purine recycling and physiological adaptations may maintain the ATP concentrations in bottlenose dolphins after diving and exercise.


Assuntos
Golfinho Nariz-de-Garrafa/sangue , Mergulho , Eritrócitos/metabolismo , Hipóxia/sangue , Condicionamento Físico Animal , Purinas/metabolismo , Respiração , Animais , Eritrócitos/enzimologia , Feminino , Masculino , Metaboloma
7.
PLoS One ; 10(9): e0139158, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413746

RESUMO

Reliable data necessary to parameterize population models are seldom available for imperiled species. As an alternative, data from populations of the same species or from ecologically similar species have been used to construct models. In this study, we evaluated the use of demographic data collected at one California sea lion colony (Los Islotes) to predict the population dynamics of the same species from two other colonies (San Jorge and Granito) in the Gulf of California, Mexico, for which demographic data are lacking. To do so, we developed a stochastic demographic age-structured matrix model and conducted a population viability analysis for each colony. For the Los Islotes colony we used site-specific pup, juvenile, and adult survival probabilities, as well as birth rates for older females. For the other colonies, we used site-specific pup and juvenile survival probabilities, but used surrogate data from Los Islotes for adult survival probabilities and birth rates. We assessed these models by comparing simulated retrospective population trajectories to observed population trends based on count data. The projected population trajectories approximated the observed trends when surrogate data were used for one colony but failed to match for a second colony. Our results indicate that species-specific and even region-specific surrogate data may lead to erroneous conservation decisions. These results highlight the importance of using population-specific demographic data in assessing extinction risk. When vital rates are not available and immediate management actions must be taken, in particular for imperiled species, we recommend the use of surrogate data only when the populations appear to have similar population trends.


Assuntos
Demografia , Leões-Marinhos/fisiologia , Animais , California , Feminino , Geografia , Masculino , Modelos Biológicos , Dinâmica Populacional , Processos Estocásticos , Análise de Sobrevida
8.
Mar Pollut Bull ; 99(1-2): 356-61, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26228068

RESUMO

Concentrations of 11 trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd, As, Hg) in 40 fish species from Santa Maria Bay, Baja California Sur, Mexico, the strategically important area for marine mammals and organisms were analyzed. Based on their concentrations the ranking of metals Fe>Zn>Ni>Cr>Mn>Pb>Cu>Co>As>Cd>Hg suggests that organism size, metabolism and feeding habits are correlated with metal concentrations. Local geological formations affect the concentrations of different metals in the aquatic environment and are subsequently transferred to fishes. The correlation analysis suggests that metabolism and nurturing habits impact the concentration of metals. Concentrations of Fe and Mn appear to be influenced by scavenging and absorption processes, which vary by species. The considerable variability in the metal concentrations obtained in different species underscores the importance of regular monitoring.


Assuntos
Peixes/metabolismo , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Baías , Monitoramento Ambiental , Metais Pesados/análise , México , Poluentes Químicos da Água/análise
9.
PLoS One ; 7(3): e33654, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22432039

RESUMO

Female aggregation and male territoriality are considered to be hallmarks of polygynous mating systems. The development of genetic parentage assignment has called into question the accuracy of behavioral traits in predicting true mating systems. In this study we use 14 microsatellite markers to explore the mating system of one of the most behaviorally polygynous species, the California sea lion (Zalophus californianus). We sampled a total of 158 female-pup pairs and 99 territorial males across two breeding rookeries (San Jorge and Los Islotes) in the Gulf of California, Mexico. Fathers could be identified for 30% of pups sampled at San Jorge across three breeding seasons and 15% of sampled pups at Los Islotes across two breeding seasons. Analysis of paternal relatedness between the pups for which no fathers were identified (sampled over four breeding seasons at San Jorge and two at Los Islotes) revealed that few pups were likely to share a father. Thirty-one percent of the sampled males on San Jorge and 15% of the sampled males on Los Islotes were assigned at least one paternity. With one exception, no male was identified as the father of more than two pups. Furthermore, at Los Islotes rookery there were significantly fewer pups assigned paternity than expected given the pool of sampled males (p<0.0001). Overall, we found considerably lower variation in male reproductive success than expected in a species that exhibits behavior associated with strongly polygynous mating. Low variation in male reproductive success may result from heightened mobility among receptive females in the Gulf of California, which reduces the ability of males to monopolize groups of females. Our results raise important questions regarding the adaptive role of territoriality and the potential for alternative mating tactics in this species.


Assuntos
Leões-Marinhos/fisiologia , Comportamento Sexual Animal/fisiologia , Alelos , Animais , California , Feminino , Loci Gênicos/genética , Geografia , Heterozigoto , Masculino , Repetições de Microssatélites/genética , Reprodução/fisiologia , Leões-Marinhos/genética
10.
PLoS One ; 5(8): e12230, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20808931

RESUMO

In polygynous mating systems, males often increase their fecundity via aggressive defense of mates and/or resources necessary for successful mating. Here we show that both male and female reproductive behavior during the breeding season (June-August) affect female fecundity, a vital rate that is an important determinant of population growth rate and viability. By using 4 years of data on behavior and demography of California sea lions (Zalophus californianus), we found that male behavior and spatial dynamics--aggression and territory size--are significantly related to female fecundity. Higher rates of male aggression and larger territory sizes were associated with lower estimates of female fecundity within the same year. Female aggression was significantly and positively related to fecundity both within the same year as the behavior was measured and in the following year. These results indicate that while male aggression and defense of territories may increase male fecundity, such interactions may cause a reduction in the overall population growth rate by lowering female fecundity. Females may attempt to offset male-related reductions in female fecundity by increasing their own aggression-perhaps to defend pups from incidental injury or mortality. Thus in polygynous mating systems, male aggression may increase male fitness at the cost of female fitness and overall population viability.


Assuntos
Agressão/fisiologia , Leões-Marinhos/fisiologia , Comportamento Sexual Animal/fisiologia , Análise de Variância , Animais , Cruzamento , Feminino , Fertilidade/fisiologia , Masculino , Reprodução/fisiologia , Leões-Marinhos/genética , Estações do Ano , Fatores de Tempo
11.
Conserv Biol ; 22(3): 701-10, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18410402

RESUMO

Commercial and subsistence fisheries pressure is increasing in the Gulf of California, Mexico. One consequence often associated with high levels of fishing pressure is an increase in bycatch of marine mammals and birds. Fisheries bycatch has contributed to declines in several pinniped species and may be affecting the California sea lion (Zalophus californianus) population in the Gulf of California. We used data on fisheries and sea lion entanglement in gill nets to estimate current fishing pressure and fishing rates under which viable sea lion populations could be sustained at 11 breeding sites in the Gulf of California. We used 3 models to estimate sustainable bycatch rates: a simple population-growth model, a demographic model, and an estimate of the potential biological removal. All models were based on life history and census data collected for sea lions in the Gulf of California. We estimated the current level of fishing pressure and the acceptable level of fishing required to maintain viable sea lion populations as the number of fishing days (1 fisher/boat setting and retrieving 1 day's worth of nets) per year. Estimates of current fishing pressure ranged from 101 (0-405) fishing days around the Los Machos breeding site to 1887 (842-3140) around the Los Islotes rookery. To maintain viable sea lion populations at each site, the current level of fishing permissible could be augmented at some sites and should be reduced at other sites. For example, the area around San Esteban could support up to 1428 (935-2337) additional fishing days, whereas fishing around Lobos should be reduced by at least 165 days (107-268). Our results provide conservation practitioners with site-specific guidelines for maintaining sustainable sea lion populations and provide a method to estimate fishing pressure and sustainable bycatch rates that could be used for other marine mammals and birds.


Assuntos
Conservação dos Recursos Naturais , Leões-Marinhos/fisiologia , Animais , Ecossistema , Pesqueiros , México , Modelos Biológicos , Dinâmica Populacional , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...