Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
RSC Adv ; 13(42): 29784-29800, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37829709

RESUMO

Silver nanoparticles (AgNPs) are one of the widely studied nanomaterials for diverse biomedical applications, in particular, as antimicrobial agents to kill bacteria, fungi, and viruses. In this report, AgNPs were synthesized using a geranium (Pelargonium x hortorum) leaves extract and tested for their antimicrobial and cytotoxic activity and reactive oxygen species (ROS) production. Using green biosynthesis, the leaves extract was employed as a reducing and stabilizing agent. Synthesis parameters like reaction time and precursor (silver nitrate AgNO3) volume final were modified, and the products were tested against Streptococcus mutans. For the first time, the metabolomic analysis of extract, we have identified more than 50 metabolites. The UV-Vis analysis showed a peak ranging from 410-430 nm, and TEM confirmed their nearly spherical morphology for all NPs. The antimicrobial activity of the NPs revealed a minimum inhibitory concentration (MIC) of 10 µg mL-1. Concerning cytotoxicity, a dose-time-dependent effect was observed with a 50% cellular cytotoxicity concentration (CC50) of 4.51 µg mL-1 at 24 h. Interestingly, the cell nuclei were visualized using fluorescence microscopy, and no significant changes were observed. These results suggest that synthesized spherical AgNPs are promising potential candidates for medical applications.

2.
Materials (Basel) ; 15(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269006

RESUMO

Reclaimed asphalt pavements (RAP) provide economic and environmental benefits. In recent decades, their use has increased, but rheological properties are affected by RAP aging, increasing stiffness, cracking, and susceptibility to water. To counteract these effects, rejuvenating agents are used, but they must be properly dosed to design quality mixtures. Therefore, different binders were analyzed, including virgin binder (VBB), binder modified by SBS polymer (MB), AC-RAP, binder softened using a rejuvenating agent, and binders softened with doses (15%, 30%, and 45%) of AC-RAP. The rheological properties were evaluated by dynamic shear rheometry (DSR) and beam-bending rheometry (BBR) tests, while the linear amplitude sweep (LAS) test was used to measure fatigue cracking and the multiple stress creep recovery (MSCR) test was used to measure rutting. A mixing chart was constructed based on a high temperature AC-RAP to satisfy the performance grade (PG 76-22). The results showed that softened binders become flexible, but when AC-RAP is added, they turn stiff and behave better than MB. Moreover, combining a rejuvenating agent and AC-RAP reduces the aging stiffness of RAP, improving its rheological properties without compromising the rutting or cracking resistance.

3.
Pharmaceutics ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34834218

RESUMO

Researchers in cancer nanomedicine are exploring a revolutionary multifaceted carrier for treatment and diagnosis, resulting in the proposal of various drug cargos or "magic bullets" in this past decade. Even though different nano-based complexes are registered for clinical trials, very few products enter the final stages each year because of various issues. This prevents the formulations from entering the market and being accessible to patients. In the search for novel materials, the exploitation of 2D nanosheets, including but not limited to the highly acclaimed graphene, has created extensive interest for biomedical applications. A unique set of properties often characterize 2D materials, including semiconductivity, high surface area, and their chemical nature, which allow simple decoration and functionalization procedures, structures with high stability and targeting properties, vectors for controlled and sustained release of drugs, and materials for thermal-based therapies. This review discusses the challenges and opportunities of recently discovered 2D nanosheets for cancer therapeutics, with special attention paid to the most promising design technologies and their potential for clinical translation in the future.

4.
Molecules ; 25(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575630

RESUMO

Heparin-based silver nanoparticles (AgHep-NPs) and gold nanoparticles (AuHep-NPs) were produced by a photochemical method using silver nitrate and chloroauric acid as metal precursors and UV light at 254 nm. UV-Vis spectroscopy graphs showed absorption for AgHep-NPs and AuHep-NPs at 420 nm and 530 nm, respectively. TEM revealed a pseudospherical morphology and a small size, corresponding to 10-25 nm for AgHep-NPs and 1.5-7.5 nm for AuHep-NPs. Their antifungal activity against Candida albicans, Issatchenkia orientalis (Candida krusei), and Candida parapsilosis was assessed by the microdilution method. We show that AgHep-NPs were effective in decreasing fungus density, whereas AuHep-NPs were not. Additionally, the viability of human gingival fibroblasts was preserved by both nanoparticle types at a level above 80%, indicating a slight cytotoxicity. These results are potentially useful for applications of the described NPs mainly in dentistry and, to a lesser extent, in other biomedical areas.


Assuntos
Antifúngicos , Candida/crescimento & desenvolvimento , Citotoxinas , Fibroblastos/metabolismo , Gengiva/metabolismo , Ouro , Nanopartículas Metálicas/química , Processos Fotoquímicos , Prata/química , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Linhagem Celular , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Ouro/química , Ouro/farmacologia , Humanos
5.
Rev. odontol. mex ; 19(3): 174-180, jul.-sep. 2015. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: lil-791605

RESUMO

El propósito de este estudio fue caracterizar los componentes de los cementos comerciales para uso en odontología MTA Angelus ® Blanco (Angelus, Lodrina, Paraná Brasil) y de Biodentine TM (Septodont, Saint-Maur-des Fosses, Francia) mediante Microscopia Electrónica de Barrido, difracción de rayos X, fluorescencia de rayos X, espectrometría de dispersión de electrones y espectroscopia infrarroja. Los dos cementos se mezclaron según las indicaciones del fabricante. Se les practicó un estudio de textura de superficie mediante el microscopio electrónico de barrido (MEB), un análisis de difracción de rayos X (DRX), un análisis de fluorescencia de rayos X (FRX), un análisis de espectrometría de energía dispersiva (EDS) y un análisis de espectroscopia infrarroja (IR), para determinar los grupos funcionales. Resultados: Se presentó una diferencia en el análisis XRD entre Biodentine presentó Na2O y ZrO2 mientras que están ausentes en el MTA. El MTA presentó Cr2O3 y BiO2 ausentes en el Biodentine. En el análisis de EDS las diferencias fueron en el agente radiopacador y que el Biodentine presentó Cl a diferencia del MTA y en el análisis estadístico realizado, a pesar de que prácticamente se presentaron los mismos componentes, los porcentajes en los contenidos de éstos fueron estadísticamente signifi cativos. En el análisis de MEB hay una gran diferencia, el MTA presenta una superfi cie porosa e irregular, el Biodentine una forma fi brilar e irregular. Conclusión: Existe una gran similitud en los componentes químicos entre el MTA Angelus y Biodentine con excepción de los componentes químicos para proporcionarles radiopacidad, el tamaño y la forma del grano y en el caso del Biodentine el cloruro de calcio.


The aim of the present study was to characterize components of commercial cements used in dentistry MTA Angelus® White (Angelus Lodrina, Parana Brazil) and Biodentine TM (Septodont, Saint-Maurdes Fosses, France). Techniques used for said characterization were Scanning Electron Microscope, X-Ray Diffraction, X Ray Fluorescence, Electron Dispersion Spectrometry, and Infrared Spectroscopy. Both cements were mixed according to manufactures instructions. A study of surface texture was conducted with Scanning Electron Microscope (SEM), and X Ray Diffraction (XRD) analysis, and X Ray fluorescence analysis (XRF), an analysis of Dispersive Energy Spectrometry (DES), as well as an Infra Red Spectroscopy (IRS) in order to determine functional groups. Results: In XRD analysis, a difference was found: Biodentine exhibited Na2O and ZrO2. These elements were absent in MTA. MTA presented Cr2O3 and BiO2 which in turn were absent in Biodentine. EDS analysis revealed that differences were found in the radio-opacifying agent, and that Biodentine presented CaCl2 differing in this from MTA. Statistical analysis conducted revealed statistically signifi cant percentages in contents, even though components were found to be practically the same. SEM analysis revealed marked differences: MTA presented irregular and porous surface whereas Biodentine exhibited irregular and filament form. Conclusion: There is a great similarity in the chemical components of MTA Angelus and Biodentine, with the exception of chemical components providing radio-opacity, the size and form of the grain, and, in Biodentine presence of calcium chloride.

6.
Biomed Eng Online ; 11: 78, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23088559

RESUMO

BACKGROUND: Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal), despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. METHODS: In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm) were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU). RESULTS: 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. CONCLUSIONS: There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.


Assuntos
Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Animais , Materiais Biocompatíveis/química , Cristalização , Relação Dose-Resposta a Droga , Teste de Materiais , Camundongos , Células NIH 3T3 , Nanopartículas/química , Dióxido de Silício/química
7.
J Mater Sci Mater Med ; 22(9): 2097-109, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21744103

RESUMO

Chemotropic proteins guide neuronal projections to their final target during embryo development and are useful to guide axons of neurons used in transplantation therapies. Site-specific delivery of the proteins however is needed for their application in the brain to avoid degradation and pleiotropic affects. In the present study we report the use of Poly (ethylene glycol)-Silica (PEG-Si) nanocomposite gel with thixotropic properties that make it injectable and suitable for delivery of the chemotropic protein semaphorin 3A. PEG-Si gel forms a functional gradient of semaphorin that enhances axon outgrowth of dopaminergic neurons from rat embryos or differentiated from stem cells in culture. It is not cytotoxic and its properties allowed its injection into the striatum without inflammatory response in the short term. Long term implantation however led to an increase in macrophages and glial cells. The inflammatory response could have resulted from non-degraded silica particles, as observed in biodegradation assays.


Assuntos
Dopamina/metabolismo , Nanoestruturas , Neurônios/citologia , Animais , Materiais Biocompatíveis , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Polietilenoglicóis , Ratos , Proteínas Recombinantes/administração & dosagem , Semaforina-3A/administração & dosagem , Análise Espectral Raman
8.
J Nanosci Nanotechnol ; 8(6): 3142-5, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18681059

RESUMO

The synthesis, characterization and corrosion properties of a novel material, produced by the reaction of silica nanoparticles with a functionalized Phenol-Formaldehyde Resin (PFR), are presented. Carboxylic groups were attached in situ to the PFR skeleton to produce a functionalized resin (PFR-SA), which is then reacted with sol-gel-prepared silica nanoparticles, yielding a novel hybrid (organic/inorganic) material (PFR-SA-nanoSiO2). This hybrid material was characterized by FT-IR, FT-Raman, TGA, DSC, SEM and corrosion tests, whose results showed significant improvement of the thermal properties in comparison with the PFR coating. In addition, the new material was efficient and durable against corrosion of metals, with the anticorrosive performance of PFR-SA and PFR-SA/nanoSiO2 coating films being superior to those of the original PFR coating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...