Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12044, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103580

RESUMO

External factors such as geography and weather strongly affect bird migration influencing daily travel schedules and flight speeds. For strictly thermal-soaring migrants, weather explains most seasonal and regional differences in speed. Flight generalists, which alternate between soaring and flapping flight, are expected to be less dependent on weather, and daily travel schedules are likely to be strongly influenced by geography and internal factors such as sex. We GPS-tracked the migration of 70 lesser kestrels (Falco naumanni) to estimate the relative importance of external factors (wind, geography), internal factors (sex) and season, and the extent to which they explain variation in travel speed, distance, and duration. Our results show that geography and tailwind are important factors in explaining variation in daily travel schedules and speeds. We found that wind explained most of the seasonal differences in travel speed. In both seasons, lesser kestrels sprinted across ecological barriers and frequently migrated during the day and night. Conversely, they travelled at a slower pace and mainly during the day over non-barriers. Our results highlighted that external factors far outweighed internal factors and season in explaining variation in migratory behaviour of a flight generalist, despite its ability to switch between flight modes.

2.
PLoS One ; 12(6): e0177892, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591181

RESUMO

Tri-axial accelerometry has proved to be a useful technique to study animal behavior with little direct observation, and also an effective way to measure energy expenditure, allowing a refreshing revisit to optimal foraging theory. This theory predicts that individuals should gain the most energy for the lowest cost in terms of time and energy when foraging, in order to maximize their fitness. However, during a foraging trip, central-place foragers could face different trade-offs during the commuting and searching parts of the trip, influencing behavioral decisions. Using the lesser kestrel (Falco naumanni) as an example we study the time and energy costs of different behaviors during the commuting and searching parts of a foraging trip. Lesser kestrels are small insectivorous falcons that behave as central-place foragers during the breeding season. They can commute by adopting either time-saving flapping flights or energy-saving soaring-gliding flights, and capture prey by using either time-saving active hovering flights or energy-saving perch-hunting. We tracked 6 lesser kestrels using GPS and tri-axial accelerometers during the breeding season. Our results indicate that males devoted more time and energy to flight behaviors than females in agreement with being the sex responsible for food provisioning to the nest. During the commuting flights, kestrels replaced flapping with soaring-gliding flights as solar radiation increased and thermal updrafts got stronger. In the searching part, they replaced perch-hunting with hovering as wind speed increased and they experienced a stronger lift. But also, they increased the use of hovering as air temperature increased, which has a positive influence on the activity level of the preferred prey (large grasshoppers). Kestrels maintained a constant energy expenditure per foraging trip, although flight and hunting strategies changed dramatically with weather conditions, suggesting a fixed energy budget per trip to which they adjusted their commuting and searching strategies in response to weather conditions.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Voo Animal/fisiologia , Tempo (Meteorologia) , Acelerometria , Animais , Metabolismo Energético/fisiologia , Sistemas de Informação Geográfica
3.
Mov Ecol ; 5: 13, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496983

RESUMO

BACKGROUND: Continuous time movement models resolve many of the problems with scaling, sampling, and interpretation that affect discrete movement models. They can, however, be challenging to estimate, have been presented in inconsistent ways, and are not widely used. METHODS: We review the literature on integrated Ornstein-Uhlenbeck velocity models and propose four fundamental correlated velocity movement models (CVM's): random, advective, rotational, and rotational-advective. The models are defined in terms of biologically meaningful speeds and time scales of autocorrelation. We summarize several approaches to estimating the models, and apply these tools for the higher order task of behavioral partitioning via change point analysis. RESULTS: An array of simulation illustrate the precision and accuracy of the estimation tools. An analysis of a swimming track of a bowhead whale (Balaena mysticetus) illustrates their robustness to irregular and sparse sampling and identifies switches between slower and faster, and directed vs. random movements. An analysis of a short flight of a lesser kestrel (Falco naumanni) identifies exact moments when switches occur between loopy, thermal soaring and directed flapping or gliding flights. CONCLUSIONS: We provide tools to estimate parameters and perform change point analyses in continuous time movement models as an R package (smoove). These resources, together with the synthesis, should facilitate the wider application and development of correlated velocity models among movement ecologists.

4.
Mov Ecol ; 5: 8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28451434

RESUMO

BACKGROUND: In species with biparental care both members of the breeding pair cooperate to raise the offspring either by assisting each other in every reproductive task or by specializing in different ones. The latter case is known as reproductive role specialization. Raptors are considered one of the most role-specialized groups, but little is known about parental behavior away from the nest. Until the advent of biologgers, avian role specialization was traditionally studied with direct observations at the nest because of the difficulties of following and recording the behavior of free-ranging individuals. In this paper we analyze how the role specialization of the lesser kestrel (Falco naumanni) influences foraging movement patterns throughout the breeding season. We tracked 30 lesser kestrel breeders from two breeding colonies using high-frequency GPS-dataloggers during four consecutive breeding seasons. RESULTS: We found no differences between sexes in lesser kestrel foraging movements early in the breeding season before the formation of the breeding pair. However, we observed sexually distinct foraging movement strategies later in the breeding season once breeding pairs were formed. Lesser kestrel males performed a large number of short foraging trips while females made a few long ones. This maximized the provisioning rate by males to feed their mates and offspring. Meanwhile, lesser kestrel females spent more time at the colony than males in order to defend the nest, incubate the eggs and brood the nestlings. Females also helped their mates to provision the nestling once these had grown and required more food and less protection. Furthermore, lesser kestrels showed a sexual spatial segregation in foraging areas, with males foraging closer to the colony than females. CONCLUSIONS: The lesser kestrel responds to changes in energy demand throughout the breeding season with its foraging movement strategy, but in a different way depending on parental sex. The sexual spatial segregation observed is likely to be the result of an adaptive foraging strategy based on role specialization to reduce prey depletion close to the colony and intersexual competition in order to improve breeding success.

5.
PLoS One ; 10(12): e0145402, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26689780

RESUMO

Individuals allocate considerable amounts of energy to movement, which ultimately affects their ability to survive and reproduce. Birds fly by flapping their wings, which is dependent on the chemical energy produced by muscle work, or use soaring-gliding flight, in which chemical energy is replaced with energy harvested from moving air masses, such as thermals. Flapping flight requires more energy than soaring-gliding flight, and this difference in the use of energy increases with body mass. However, soaring-gliding results in lower speeds than flapping, especially for small species. Birds therefore face a trade-off between energy and time costs when deciding which flight strategy to use. Raptors are a group of large birds that typically soar. As relatively light weight raptors, falcons can either soar on weak thermals or fly by flapping with low energy costs. In this paper, we study the flight behavior of the insectivorous lesser kestrel (Falco naumanni) during foraging trips and the influence of solar radiation, which we have adopted as a proxy for thermal formation, on kestrel flight variables. We tracked 35 individuals from two colonies using high frequency GPS-dataloggers over four consecutive breeding seasons. Contrary to expectations, kestrels relied heavily on thermal soaring when foraging, especially during periods of high solar radiation. This produced a circadian pattern in the kestrel flight strategy that led to a spatial segregation of foraging areas. Kestrels flapped towards foraging areas close to the colony when thermals were not available. However, as soon as thermals were formed, they soared on them towards foraging areas far from the colony, especially when they were surrounded by poor foraging habitats. This reduced the chick provisioning rate at the colony. Given that lesser kestrels have a preference for feeding on large insects, and considering the average distance they cover to capture them during foraging trips, to commute using flapping flight would result in a negative energy balance for the family group. Our results show that lesser kestrels prioritize saving energy when foraging, suggesting that kestrels are more energy than time-constrained during the breeding season.


Assuntos
Falconiformes/fisiologia , Voo Animal/fisiologia , Aves Predatórias/fisiologia , Animais , Ecossistema , Metabolismo Energético/fisiologia , Feminino , Sistemas de Informação Geográfica , Masculino , Comportamento Predatório , Espanha , Luz Solar
6.
PLoS One ; 7(12): e50336, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23239979

RESUMO

Technological advances for wildlife monitoring have expanded our ability to study behavior and space use of many species. But biotelemetry is limited by size, weight, data memory and battery power of the attached devices, especially in animals with light body masses, such as the majority of bird species. In this study, we describe the combined use of GPS data logger information obtained from free-ranging birds, and environmental information recorded by unmanned aerial systems (UASs). As a case study, we studied habitat selection of a small raptorial bird, the lesser kestrel Falco naumanni, foraging in a highly dynamic landscape. After downloading spatio-temporal information from data loggers attached to the birds, we programmed the UASs to fly and take imagery by means of an onboard digital camera documenting the flight paths of those same birds shortly after their recorded flights. This methodology permitted us to extract environmental information at quasi-real time. We demonstrate that UASs are a useful tool for a wide variety of wildlife studies.


Assuntos
Comportamento Animal , Falconiformes/fisiologia , Voo Animal , Sistemas de Informação Geográfica/instrumentação , Animais , Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...