Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 2): 132152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723811

RESUMO

Carbon nanofibers (CNFs) are very promising materials with application in many fields, such as sensors, filtration systems, and energy storage devices. This study aims to explore the use of eco-friendly biopolymers for CNF production, finding novel, suitable and sustainable precursors and thus prioritising environmentally conscious processes and ecological compatibility. Polymeric nanofibers (PNFs) using cellulose acetate, polylactic acid, and chitosan as precursors were successfully prepared via electrospinning. Rheological testing was performed to determine suitable solution concentrations for the production of PNFs with controlled diameter and appropriate morphology. Their dimensions and structure were found to be significantly influenced by the solution concentration and electrospinning flow rate. Subsequently, the electrospun green nanofibers were subject to stabilisation and carbonisation to convert them into CNFs. Thermal behaviour and chemical/structural changes of the nanofibers during stabilisation were investigated by means of thermogravimetric analysis and Fourier-transform infrared spectroscopy, while the final morphology of the fibers after stabilisation and carbonisation was examined through scanning electron microscopy to determine the optimal stabilisation parameters. The optimal fabrication parameters for cellulose and chitosan-based CNFs with excellent morphology and thermal stability were successfully established, providing valuable insight and methods for the sustainable and environmentally friendly synthesis of these promising materials.


Assuntos
Carbono , Celulose , Quitosana , Nanofibras , Poliésteres , Nanofibras/química , Nanofibras/ultraestrutura , Quitosana/química , Celulose/química , Poliésteres/química , Carbono/química , Química Verde/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
2.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772491

RESUMO

The use of planar waveguides has recently shown great success in the field of optical sensors based on the Lossy Mode Resonance (LMR) phenomenon. The properties of Graphene Oxide (GO) have been widely exploited in various sectors of science and technology, with promising results for gas sensing applications. This work combines both, the LMR-based sensing technology on planar waveguides and the use of a GO thin film as a sensitive coating, to monitor ethanol, water, and acetone. Experimental results on the fabrication and performance of the sensor are presented. The obtained results showed a sensitivity of 3.1, 2.0, and 0.6 pm/ppm for ethanol, water, and acetone respectively, with a linearity factor R2 > 0.95 in all cases.

3.
Sensors (Basel) ; 20(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512876

RESUMO

This Special Issue compiles a set of innovative developments on the use of graphene-based materials in the fabrication of sensors. In particular, these contributions report original studies on a wide variety of sensors, such as gas sensors for NO2 or NH3 detection, antibody biosensors or mass sensors. All these devices have one point in common: they have been built using graphene-based materials like graphene, graphene oxide, reduced graphene oxide, inkject printing graphene, graphene-based composite sponges, graphene screen-printed electrodes or graphene quantum dots.

4.
Sensors (Basel) ; 18(1)2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29280947

RESUMO

The influence of graphene oxide (GO) over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR) has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO2 thin film. Layer by layer (LbL) coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI) and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

5.
Sensors (Basel) ; 17(10)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019945

RESUMO

The measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently.

6.
Sensors (Basel) ; 17(1)2017 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28098825

RESUMO

Graphene and its derivatives have become the most explored materials since Novoselov and Geim (Nobel Prize winners for Physics in 2010) achieved its isolation in 2004. The exceptional properties of graphene have attracted the attention of the scientific community from different research fields, generating high impact not only in scientific journals, but also in general-interest newspapers. Optical fibre sensing is one of the many fields that can benefit from the use of these new materials, combining the amazing morphological, chemical, optical and electrical features of graphene with the advantages that optical fibre offers over other sensing strategies. In this document, a review of the current state of the art for optical fibre sensors based on graphene materials is presented.

7.
Nanoscale Res Lett ; 8(1): 539, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24359137

RESUMO

An inorganic short chain polymer, poly(sodium phosphate), PSP, together with poly(allylamine hydrochloride), PAH, is used to fabricate layer-by-layer (LbL) films. The thickness, roughness, contact angle, and optical transmittance of these films are studied depending on three parameters: the precursor solution concentrations (10-3 and 10-4 M), the number of bilayers deposited (20, 40, 60, 80, and 100 bilayers), and the specific technique used for the LbL fabrication (dipping or spraying). In most cases of this experimental study, the roughness of the nanofilms increases with the number of bilayers. This contradicts the basic observations made in standard LbL assemblies where the roughness decreases for thicker coatings. In fact, a wide range of thickness and roughness was achieved by means of adjusting the three parameters mentioned above. For instance, a roughness of 1.23 or 205 nm root mean square was measured for 100 bilayer coatings. Contact angles close to 0 were observed. Moreover, high optical transmittance is also reported, above 90%, for 80 bilayer films fabricated with the 10-4 M solutions. Therefore, these multilayer structures can be used to obtain transparent superhydrophilic surfaces.

8.
Appl Opt ; 51(19): 4298-307, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22772101

RESUMO

Lossy mode resonances can be obtained in the transmission spectrum of cladding removed multimode optical fiber coated with a thin-film. The sensitivity of these devices to changes in the properties of the coating or the surrounding medium can be optimized by means of the adequate parameterization of the coating refractive index, the coating thickness, and the surrounding medium refractive index. Some basic rules of design, which enable the selection of the best parameters for each specific sensing application, are indicated in this work.

9.
Opt Express ; 18(19): 20183-9, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940909

RESUMO

Two optical fiber devices have been coated in parallel: a long period fiber grating (LPFG) and a cladding-removed multimode optical fiber (CRMOF). The progressive coating of the LPFG by means of the layer-by-layer electrostatic-self-assembly, permits to observe a resonance wavelength shift of the attenuation bands in the transmission spectrum. The cause of this wavelength shift is the reorganization of the cladding mode effective indices. The cause of this modal reorganization can be understood with the results observed in the CRMOF coated in parallel. A lossy-mode-resonance (LMR) is generated in the same wavelength range of the LPFG attenuation bands analyzed. Moreover, the thickness range where the wavelength shift of the LPFG attenuation bands occurs coincides exactly with the thickness range where the LMR can be visualized in the transmission spectrum. These phenomena are analyzed theoretically and corroborated experimentally. The advantages and disadvantages of both optical fiber devices are explained.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
10.
Appl Opt ; 49(20): 3980-5, 2010 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-20648176

RESUMO

We obtain lossy mode resonances by the coupling of light from a multimode optical waveguide to a TiO(2)/PSS coating deposited with the layer-by-layer method. The resonances can be generated in a wide wavelength range from the ultraviolet to the infrared region of the optical spectrum. The transmission spectrum is monitored as a function of the number of bilayers deposited, and the experimental results agree with the theoretical predictions. Moreover, each of the resonances owns a particular sensitivity to the external refractive index. This permits us to use the sensor as a refractometer with multiple-wavelength monitorization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...