Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 553, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724695

RESUMO

For the last two decades, the amount of genomic data produced by scientific and medical applications has been growing at a rapid pace. To enable software solutions that analyze, process, and transmit these data in an efficient and interoperable way, ISO and IEC released the first version of the compression standard MPEG-G in 2019. However, non-proprietary implementations of the standard are not openly available so far, limiting fair scientific assessment of the standard and, therefore, hindering its broad adoption. In this paper, we present Genie, to the best of our knowledge the first open-source encoder that compresses genomic data according to the MPEG-G standard. We demonstrate that Genie reaches state-of-the-art compression ratios while offering interoperability with any other standard-compliant decoder independent from its manufacturer. Finally, the ISO/IEC ecosystem ensures the long-term sustainability and decodability of the compressed data through the ISO/IEC-supported reference decoder.


Assuntos
Compressão de Dados , Genômica , Software , Genômica/métodos , Compressão de Dados/métodos , Humanos
2.
Nucleic Acids Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597610

RESUMO

Grouping gene expression into gene set activity scores (GSAS) provides better biological insights than studying individual genes. However, existing gene set projection methods cannot return representative, robust, and interpretable GSAS. We developed NetActivity, a machine learning framework that generates GSAS based on a sparsely-connected autoencoder, where each neuron in the inner layer represents a gene set. We proposed a three-tier training that yielded representative, robust, and interpretable GSAS. NetActivity model was trained with 1518 GO biological processes terms and KEGG pathways and all GTEx samples. NetActivity generates GSAS robust to the initialization parameters and representative of the original transcriptome, and assigned higher importance to more biologically relevant genes. Moreover, NetActivity returns GSAS with a more consistent definition and higher interpretability than GSVA and hipathia, state-of-the-art gene set projection methods. Finally, NetActivity enables combining bulk RNA-seq and microarray datasets in a meta-analysis of prostate cancer progression, highlighting gene sets related to cell division, key for disease progression. When applied to metastatic prostate cancer, gene sets associated with cancer progression were also altered due to drug resistance, while a classical enrichment analysis identified gene sets irrelevant to the phenotype. NetActivity is publicly available in Bioconductor and GitHub.

3.
Neuro Oncol ; 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554031

RESUMO

BACKGROUND: Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated. METHODS: The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq and multiplexed immunofluorescence staining. RESULTS: The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype. CONCLUSIONS: The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone.

4.
EBioMedicine ; 102: 105048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484556

RESUMO

BACKGROUND: Tobacco is the main risk factor for developing lung cancer. Yet, while some heavy smokers develop lung cancer at a young age, other heavy smokers never develop it, even at an advanced age, suggesting a remarkable variability in the individual susceptibility to the carcinogenic effects of tobacco. We characterized the germline profile of subjects presenting these extreme phenotypes with Whole Exome Sequencing (WES) and Machine Learning (ML). METHODS: We sequenced germline DNA from heavy smokers who either developed lung adenocarcinoma at an early age (extreme cases) or who did not develop lung cancer at an advanced age (extreme controls), selected from databases including over 6600 subjects. We selected individual coding genetic variants and variant-rich genes showing a significantly different distribution between extreme cases and controls. We validated the results from our discovery cohort, in which we analysed by WES extreme cases and controls presenting similar phenotypes. We developed ML models using both cohorts. FINDINGS: Mean age for extreme cases and controls was 50.7 and 79.1 years respectively, and mean tobacco consumption was 34.6 and 62.3 pack-years. We validated 16 individual variants and 33 variant-rich genes. The gene harbouring the most validated variants was HLA-A in extreme controls (4 variants in the discovery cohort, p = 3.46E-07; and 4 in the validation cohort, p = 1.67E-06). We trained ML models using as input the 16 individual variants in the discovery cohort and tested them on the validation cohort, obtaining an accuracy of 76.5% and an AUC-ROC of 83.6%. Functions of validated genes included candidate oncogenes, tumour-suppressors, DNA repair, HLA-mediated antigen presentation and regulation of proliferation, apoptosis, inflammation and immune response. INTERPRETATION: Individuals presenting extreme phenotypes of high and low risk of developing tobacco-associated lung adenocarcinoma show different germline profiles. Our strategy may allow the identification of high-risk subjects and the development of new therapeutic approaches. FUNDING: See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Pessoa de Meia-Idade , Idoso , Sequenciamento do Exoma , Predisposição Genética para Doença , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fenótipo , Células Germinativas/patologia
5.
EMBO Mol Med ; 16(1): 112-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182795

RESUMO

The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.


Assuntos
Sistemas CRISPR-Cas , Hiperoxalúria Primária , Humanos , Animais , Camundongos , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Edição de Genes , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia
6.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38134424

RESUMO

MOTIVATION: Drug-target interaction (DTI) prediction is a relevant but challenging task in the drug repurposing field. In-silico approaches have drawn particular attention as they can reduce associated costs and time commitment of traditional methodologies. Yet, current state-of-the-art methods present several limitations: existing DTI prediction approaches are computationally expensive, thereby hindering the ability to use large networks and exploit available datasets and, the generalization to unseen datasets of DTI prediction methods remains unexplored, which could potentially improve the development processes of DTI inferring approaches in terms of accuracy and robustness. RESULTS: In this work, we introduce GeNNius (Graph Embedding Neural Network Interaction Uncovering System), a Graph Neural Network (GNN)-based method that outperforms state-of-the-art models in terms of both accuracy and time efficiency across a variety of datasets. We also demonstrated its prediction power to uncover new interactions by evaluating not previously known DTIs for each dataset. We further assessed the generalization capability of GeNNius by training and testing it on different datasets, showing that this framework can potentially improve the DTI prediction task by training on large datasets and testing on smaller ones. Finally, we investigated qualitatively the embeddings generated by GeNNius, revealing that the GNN encoder maintains biological information after the graph convolutions while diffusing this information through nodes, eventually distinguishing protein families in the node embedding space. AVAILABILITY AND IMPLEMENTATION: GeNNius code is available at https://github.com/ubioinformat/GeNNius.


Assuntos
Sistemas de Liberação de Medicamentos , Reposicionamento de Medicamentos , Interações Medicamentosas , Difusão , Redes Neurais de Computação
7.
Front Immunol ; 14: 1270843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795087

RESUMO

Despite the potential of CAR-T therapies for hematological malignancies, their efficacy in patients with relapse and refractory Acute Myeloid Leukemia has been limited. The aim of our study has been to develop and manufacture a CAR-T cell product that addresses some of the current limitations. We initially compared the phenotype of T cells from AML patients and healthy young and elderly controls. This analysis showed that T cells from AML patients displayed a predominantly effector phenotype, with increased expression of activation (CD69 and HLA-DR) and exhaustion markers (PD1 and LAG3), in contrast to the enriched memory phenotype observed in healthy donors. This differentiated and more exhausted phenotype was also observed, and corroborated by transcriptomic analyses, in CAR-T cells from AML patients engineered with an optimized CAR construct targeting CD33, resulting in a decreased in vivo antitumoral efficacy evaluated in xenograft AML models. To overcome some of these limitations we have combined CRISPR-based genome editing technologies with virus-free gene-transfer strategies using Sleeping Beauty transposons, to generate CAR-T cells depleted of HLA-I and TCR complexes (HLA-IKO/TCRKO CAR-T cells) for allogeneic approaches. Our optimized protocol allows one-step generation of edited CAR-T cells that show a similar phenotypic profile to non-edited CAR-T cells, with equivalent in vitro and in vivo antitumoral efficacy. Moreover, genomic analysis of edited CAR-T cells revealed a safe integration profile of the vector, with no preferences for specific genomic regions, with highly specific editing of the HLA-I and TCR, without significant off-target sites. Finally, the production of edited CAR-T cells at a larger scale allowed the generation and selection of enough HLA-IKO/TCRKO CAR-T cells that would be compatible with clinical applications. In summary, our results demonstrate that CAR-T cells from AML patients, although functional, present phenotypic and functional features that could compromise their antitumoral efficacy, compared to CAR-T cells from healthy donors. The combination of CRISPR technologies with transposon-based delivery strategies allows the generation of HLA-IKO/TCRKO CAR-T cells, compatible with allogeneic approaches, that would represent a promising option for AML treatment.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Animais , Humanos , Idoso , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Imunoterapia Adotiva/métodos , Modelos Animais de Doenças
8.
Nat Ecol Evol ; 7(8): 1232-1244, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37264201

RESUMO

Understanding how genotypic variation results in phenotypic variation is especially difficult for collective behaviour because group phenotypes arise from complex interactions among group members. A genome-wide association study identified hundreds of genes associated with colony-level variation in honeybee aggression, many of which also showed strong signals of positive selection, but the influence of these 'colony aggression genes' on brain function was unknown. Here we use single-cell (sc) transcriptomics and gene regulatory network (GRN) analyses to test the hypothesis that genetic variation for colony aggression influences individual differences in brain gene expression and/or gene regulation. We compared soldiers, which respond to territorial intrusion with stinging attacks, and foragers, which do not. Colony environment showed stronger influences on soldier-forager differences in brain gene regulation compared with brain gene expression. GRN plasticity was strongly associated with colony aggression, with larger differences in GRN dynamics detected between soldiers and foragers from more aggressive relative to less aggressive colonies. The regulatory dynamics of subnetworks composed of genes associated with colony aggression genes were more strongly correlated with each other across different cell types and brain regions relative to other genes, especially in brain regions involved with olfaction and vision and multimodal sensory integration, which are known to mediate bee aggression. These results show how group genetics can shape a collective phenotype by modulating individual brain gene regulatory network architecture.


Assuntos
Agressão , Abelhas , Comportamento Animal , Estudo de Associação Genômica Ampla , Animais , Agressão/fisiologia , Abelhas/genética , Encéfalo/fisiologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes
9.
Cancer Res ; 83(8): 1361-1380, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36779846

RESUMO

Survival rates of patients with metastatic castration-resistant prostate cancer (mCRPC) are low due to lack of response or acquired resistance to available therapies, such as abiraterone (Abi). A better understanding of the underlying molecular mechanisms is needed to identify effective targets to overcome resistance. Given the complexity of the transcriptional dynamics in cells, differential gene expression analysis of bulk transcriptomics data cannot provide sufficient detailed insights into resistance mechanisms. Incorporating network structures could overcome this limitation to provide a global and functional perspective of Abi resistance in mCRPC. Here, we developed TraRe, a computational method using sparse Bayesian models to examine phenotypically driven transcriptional mechanistic differences at three distinct levels: transcriptional networks, specific regulons, and individual transcription factors (TF). TraRe was applied to transcriptomic data from 46 patients with mCRPC with Abi-response clinical data and uncovered abrogated immune response transcriptional modules that showed strong differential regulation in Abi-responsive compared with Abi-resistant patients. These modules were replicated in an independent mCRPC study. Furthermore, key rewiring predictions and their associated TFs were experimentally validated in two prostate cancer cell lines with different Abi-resistance features. Among them, ELK3, MXD1, and MYB played a differential role in cell survival in Abi-sensitive and Abi-resistant cells. Moreover, ELK3 regulated cell migration capacity, which could have a direct impact on mCRPC. Collectively, these findings shed light on the underlying transcriptional mechanisms driving Abi response, demonstrating that TraRe is a promising tool for generating novel hypotheses based on identified transcriptional network disruptions. SIGNIFICANCE: The computational method TraRe built on Bayesian machine learning models for investigating transcriptional network structures shows that disruption of ELK3, MXD1, and MYB signaling cascades impacts abiraterone resistance in prostate cancer.


Assuntos
Androstenos , Resistencia a Medicamentos Antineoplásicos , Redes Reguladoras de Genes , Aprendizado de Máquina , Neoplasias da Próstata , Teorema de Bayes , Transcrição Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Humanos , Masculino , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas Proto-Oncogênicas c-myb/genética , Androstenos/uso terapêutico , Perfilação da Expressão Gênica , Simulação por Computador
10.
Cell Rep Methods ; 3(1): 100392, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814838

RESUMO

Despite the abundance of multimodal data, suitable statistical models that can improve our understanding of diseases with genetic underpinnings are challenging to develop. Here, we present SparseGMM, a statistical approach for gene regulatory network discovery. SparseGMM uses latent variable modeling with sparsity constraints to learn Gaussian mixtures from multiomic data. By combining coexpression patterns with a Bayesian framework, SparseGMM quantitatively measures confidence in regulators and uncertainty in target gene assignment by computing gene entropy. We apply SparseGMM to liver cancer and normal liver tissue data and evaluate discovered gene modules in an independent single-cell RNA sequencing (scRNA-seq) dataset. SparseGMM identifies PROCR as a regulator of angiogenesis and PDCD1LG2 and HNF4A as regulators of immune response and blood coagulation in cancer. Furthermore, we show that more genes have significantly higher entropy in cancer compared with normal liver. Among high-entropy genes are key multifunctional components shared by critical pathways, including p53 and estrogen signaling.


Assuntos
Perfilação da Expressão Gênica , Neoplasias Hepáticas , Humanos , Teorema de Bayes , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética
11.
Elife ; 122023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629404

RESUMO

Early hematopoiesis is a continuous process in which hematopoietic stem and progenitor cells (HSPCs) gradually differentiate toward specific lineages. Aging and myeloid malignant transformation are characterized by changes in the composition and regulation of HSPCs. In this study, we used single-cell RNA sequencing (scRNA-seq) to characterize an enriched population of human HSPCs obtained from young and elderly healthy individuals.Based on their transcriptional profile, we identified changes in the proportions of progenitor compartments during aging, and differences in their functionality, as evidenced by gene set enrichment analysis. Trajectory inference revealed that altered gene expression dynamics accompanied cell differentiation, which could explain aging-associated changes in hematopoiesis. Next, we focused on key regulators of transcription by constructing gene regulatory networks (GRNs) and detected regulons that were specifically active in elderly individuals. Using previous findings in healthy cells as a reference, we analyzed scRNA-seq data obtained from patients with myelodysplastic syndrome (MDS) and detected specific alterations of the expression dynamics of genes involved in erythroid differentiation in all patients with MDS such as TRIB2. In addition, the comparison between transcriptional programs and GRNs regulating normal HSPCs and MDS HSPCs allowed identification of regulons that were specifically active in MDS cases such as SMAD1, HOXA6, POU2F2, and RUNX1 suggesting a role of these transcription factors (TFs) in the pathogenesis of the disease.In summary, we demonstrate that the combination of single-cell technologies with computational analysis tools enable the study of a variety of cellular mechanisms involved in complex biological systems such as early hematopoiesis and can be used to dissect perturbed differentiation trajectories associated with perturbations such as aging and malignant transformation. Furthermore, the identification of abnormal regulatory mechanisms associated with myeloid malignancies could be exploited for personalized therapeutic approaches in individual patients.


Our blood contains many different types of cells; red blood cells carry oxygen through the body, platelets help to stop bleeding and a variety of white blood cells fight infections. All of these critical components come from a pool of immature cells in bone marrow, which can develop and specialise into any of these. However, as we get older, these immature cells can accumulate damage, including mutations in specific genes. This increases the risk of diseases such as myelodysplastic syndromes (MDS), a type of cancer in which the cells cannot develop and the patient does not have enough healthy mature blood cells. The changes in gene activity in the immature cells have previously been studied using samples from young and elderly people, as well as individuals with MDS. These studies examined large numbers of cells together, revealing differences between young and elderly people, and individuals with MDS. However, this does not describe how the different types alter their behaviour. To address this, Ainciburu, Ezponda et al. used a technique called single-cell RNA sequencing to study the gene activity in individual immature blood cells. This revealed changes associated with maturation that may account for the different combinations of cell populations in younger and older people. The results confirmed findings from previous studies and suggested new genes involved in ageing or MDS. Ainciburu, Ezponda et al. used these results to create an analytical system that highlights gene activity differences in individual MDS patients that are independent of age-related changes. These results provide new insights that could help further research into the development of MDS and the ageing process. In addition, scientists could study other diseases using this approach of analysing individual patients' gene activity. In future, this could help to personalise clinical decisions on diagnosis and treatment.


Assuntos
Envelhecimento Saudável , Síndromes Mielodisplásicas , Neoplasias , Humanos , Idoso , Hematopoese , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Síndromes Mielodisplásicas/metabolismo , Neoplasias/patologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Homeodomínio/metabolismo
12.
Glia ; 71(3): 571-587, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36353934

RESUMO

Inflammation is a common feature in neurodegenerative diseases that contributes to neuronal loss. Previously, we demonstrated that the basal inflammatory tone differed between brain regions and, consequently, the reaction generated to a pro-inflammatory stimulus was different. In this study, we assessed the innate immune reaction in the midbrain and in the striatum using an experimental model of Parkinson's disease. An adeno-associated virus serotype 9 expressing the α-synuclein and mCherry genes or the mCherry gene was administered into the substantia nigra. Myeloid cells (CD11b+ ) and astrocytes (ACSA2+ ) were purified from the midbrain and striatum for bulk RNA sequencing. In the parkinsonian midbrain, CD11b+ cells presented a unique anti-inflammatory transcriptomic profile that differed from degenerative microglia signatures described in experimental models for other neurodegenerative conditions. By contrast, striatal CD11b+ cells showed a pro-inflammatory state and were similar to disease-associated microglia. In the midbrain, a prominent increase of infiltrated monocytes/macrophages was observed and, together with microglia, participated actively in the phagocytosis of dopaminergic neuronal bodies. Although striatal microglia presented a phagocytic transcriptomic profile, morphology and cell density was preserved and no active phagocytosis was detected. Interestingly, astrocytes presented a pro-inflammatory fingerprint in the midbrain and a low number of differentially displayed transcripts in the striatum. During α-synuclein-dependent degeneration, microglia and astrocytes experience context-dependent activation states with a different contribution to the inflammatory reaction. Our results point towards the relevance of selecting appropriate cell targets to design neuroprotective strategies aimed to modulate the innate immune system during the active phase of dopaminergic degeneration.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Mesencéfalo/metabolismo , Inflamação
13.
Nat Commun ; 13(1): 7619, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494342

RESUMO

Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis, with increased incidence in older individuals. Here we analyze the transcriptome of human HSCs purified from young and older healthy adults, as well as MDS patients, identifying transcriptional alterations following different patterns of expression. While aging-associated lesions seem to predispose HSCs to myeloid transformation, disease-specific alterations may trigger MDS development. Among MDS-specific lesions, we detect the upregulation of the transcription factor DNA Damage Inducible Transcript 3 (DDIT3). Overexpression of DDIT3 in human healthy HSCs induces an MDS-like transcriptional state, and dyserythropoiesis, an effect associated with a failure in the activation of transcriptional programs required for normal erythroid differentiation. Moreover, DDIT3 knockdown in CD34+ cells from MDS patients with anemia is able to restore erythropoiesis. These results identify DDIT3 as a driver of dyserythropoiesis, and a potential therapeutic target to restore the inefficient erythroid differentiation characterizing MDS patients.


Assuntos
Síndromes Mielodisplásicas , Fatores de Transcrição , Adulto , Humanos , Idoso , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Síndromes Mielodisplásicas/patologia , Eritropoese/genética , Células-Tronco Hematopoéticas/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição CHOP/genética
14.
Sci Adv ; 8(39): eabo0514, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179026

RESUMO

Identification of new markers associated with long-term efficacy in patients treated with CAR T cells is a current medical need, particularly in diseases such as multiple myeloma. In this study, we address the impact of CAR density on the functionality of BCMA CAR T cells. Functional and transcriptional studies demonstrate that CAR T cells with high expression of the CAR construct show an increased tonic signaling with up-regulation of exhaustion markers and increased in vitro cytotoxicity but a decrease in in vivo BM infiltration. Characterization of gene regulatory networks using scRNA-seq identified regulons associated to activation and exhaustion up-regulated in CARHigh T cells, providing mechanistic insights behind differential functionality of these cells. Last, we demonstrate that patients treated with CAR T cell products enriched in CARHigh T cells show a significantly worse clinical response in several hematological malignancies. In summary, our work demonstrates that CAR density plays an important role in CAR T activity with notable impact on clinical response.

15.
Commun Biol ; 5(1): 351, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414121

RESUMO

Single-cell RNA-Sequencing has the potential to provide deep biological insights by revealing complex regulatory interactions across diverse cell phenotypes at single-cell resolution. However, current single-cell gene regulatory network inference methods produce a single regulatory network per input dataset, limiting their capability to uncover complex regulatory relationships across related cell phenotypes. We present SimiC, a single-cell gene regulatory inference framework that overcomes this limitation by jointly inferring distinct, but related, gene regulatory dynamics per phenotype. We show that SimiC uncovers key regulatory dynamics missed by previously proposed methods across a range of systems, both model and non-model alike. In particular, SimiC was able to uncover CAR T cell dynamics after tumor recognition and key regulatory patterns on a regenerating liver, and was able to implicate glial cells in the generation of distinct behavioral states in honeybees. SimiC hence establishes a new approach to quantitating regulatory architectures between distinct cellular phenotypes, with far-reaching implications for systems biology.


Assuntos
Redes Reguladoras de Genes , Neoplasias , Animais , Abelhas , Regulação da Expressão Gênica , Fenótipo , Biologia de Sistemas
16.
Bioinformatics ; 38(9): 2488-2495, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35253844

RESUMO

MOTIVATION: An important step in the transcriptomic analysis of individual cells involves manually determining the cellular identities. To ease this labor-intensive annotation of cell-types, there has been a growing interest in automated cell annotation, which can be achieved by training classification algorithms on previously annotated datasets. Existing pipelines employ dataset integration methods to remove potential batch effects between source (annotated) and target (unannotated) datasets. However, the integration and classification steps are usually independent of each other and performed by different tools. We propose JIND (joint integration and discrimination for automated single-cell annotation), a neural-network-based framework for automated cell-type identification that performs integration in a space suitably chosen to facilitate cell classification. To account for batch effects, JIND performs a novel asymmetric alignment in which unseen cells are mapped onto the previously learned latent space, avoiding the need of retraining the classification model for new datasets. JIND also learns cell-type-specific confidence thresholds to identify cells that cannot be reliably classified. RESULTS: We show on several batched datasets that the joint approach to integration and classification of JIND outperforms in accuracy existing pipelines, and a smaller fraction of cells is rejected as unlabeled as a result of the cell-specific confidence thresholds. Moreover, we investigate cells misclassified by JIND and provide evidence suggesting that they could be due to outliers in the annotated datasets or errors in the original approach used for annotation of the target batch. AVAILABILITY AND IMPLEMENTATION: Implementation for JIND is available at https://github.com/mohit1997/JIND and the data underlying this article can be accessed at https://doi.org/10.5281/zenodo.6246322. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Perfilação da Expressão Gênica
17.
Genome Res ; 31(4): 576-591, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649154

RESUMO

The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.


Assuntos
Plasticidade Celular , Regeneração Hepática , Fígado/citologia , Fígado/metabolismo , Animais , Proliferação de Células , Hepatectomia , Hepatócitos/citologia , Hepatócitos/metabolismo , Camundongos , Análise de Célula Única , Transcriptoma
18.
Nat Comput Sci ; 1(6): 391-392, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38217235
19.
J Bioinform Comput Biol ; 18(6): 2050031, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32938284

RESUMO

The amount of sequencing data is growing at a fast pace due to a rapid revolution in sequencing technologies. Quality scores, which indicate the reliability of each of the called nucleotides, take a significant portion of the sequencing data. In addition, quality scores are more challenging to compress than nucleotides, and they are often noisy. Hence, a natural solution to further decrease the size of the sequencing data is to apply lossy compression to the quality scores. Lossy compression may result in a loss in precision, however, it has been shown that when operating at some specific rates, lossy compression can achieve performance on variant calling similar to that achieved with the losslessly compressed data (i.e. the original data). We propose Coding with Random Orthogonal Matrices for quality scores (CROMqs), the first lossy compressor designed for the quality scores with the "infinitesimal successive refinability" property. With this property, the encoder needs to compress the data only once, at a high rate, while the decoder can decompress it iteratively. The decoder can reconstruct the set of quality scores at each step with reduced distortion each time. This characteristic is specifically useful in sequencing data compression, since the encoder does not generally know what the most appropriate rate of compression is, e.g. for not degrading variant calling accuracy. CROMqs avoids the need of having to compress the data at multiple rates, hence incurring time savings. In addition to this property, we show that CROMqs obtains a comparable rate-distortion performance to the state-of-the-art lossy compressors. Moreover, we also show that it achieves a comparable performance on variant calling to that of the lossless compressed data while achieving more than 50% reduction in size.


Assuntos
Algoritmos , Compressão de Dados/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cromossomos Humanos Par 20/genética , Biologia Computacional , Simulação por Computador , Compressão de Dados/normas , Compressão de Dados/estatística & dados numéricos , Bases de Dados Genéticas/estatística & dados numéricos , Análise de Fourier , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Software
20.
Bioinformatics ; 36(18): 4810-4812, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32609343

RESUMO

MOTIVATION: Sequencing data are often summarized at different annotation levels for further analysis, generally using the general feature format (GFF) or its descendants, gene transfer format (GTF) and GFF3. Existing utilities for accessing these files, like gffutils and gffread, do not focus on reducing the storage space, significantly increasing it in some cases. We propose GPress, a framework for querying GFF files in a compressed form. GPress can also incorporate and compress expression files from both bulk and single-cell RNA-Seq experiments, supporting simultaneous queries on both the GFF and expression files. In brief, GPress applies transformations to the data which are then compressed with the general lossless compressor BSC. To support queries, GPress compresses the data in blocks and creates several index tables for fast retrieval. RESULTS: We tested GPress on several GFF files of different organisms, and showed that it achieves on average a 61% reduction in size with respect to gzip (the current de facto compressor for GFF files) while being able to retrieve all annotations for a given identifier or a range of coordinates in a few seconds (when run in a common laptop). In contrast, gffutils provides faster retrieval but doubles the size of the GFF files. When additionally linking an expression file, we show that GPress can reduce its size by more than 68% when compared to gzip (for both bulk and single-cell RNA-Seq experiments), while still retrieving the information within seconds. Finally, applying BSC to the data streams generated by GPress instead of to the original file shows a size reduction of more than 44% on average. AVAILABILITY AND IMPLEMENTATION: GPress is freely available at https://github.com/qm2/gpress. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Compressão de Dados , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq , Software , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...