Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352511

RESUMO

Atypical enteropathogenic Escherichia coli (aEPEC) is a significant cause of diarrhea in developing countries. Some aEPEC strains, including the Brazilian representative strain of serotype O51:H40 called aEPEC 1711-4, can use flagella to attach to, invade, and persist in T84 and Caco-2 intestinal cells. They can even translocate from the gut to extraintestinal sites in a rat model. Although various aspects of the virulence of this strain were studied and the requirement of the T3SS for the efficiency of the invasion process was demonstrated, the expression of the LEE genes during the invasion and intracellular persistence remains unclear. To address this, the expression of flagella and the different LEE operons was evaluated during kinetic experiments of the interaction of aEPEC 1711-4 with enterocytes in vitro. The genome of the strain was also sequenced. The results showed that flagella expression remained unchanged, but the expression of eae and escJ increased during the early interaction and invasion of aEPEC 1711-4 into Caco-2 cells, and there was no change 24 hours post-infection during the persistence period. The number of pedestal-like structures formed on HeLa cells also increased during the 24-hour analysis. No known gene related to the invasion process was identified in the genome of aEPEC 1711-4, which was shown to belong to the global EPEC lineage 10. These findings suggest that LEE components and the intimate adherence promoted by intimin are necessary for the invasion and persistence of aEPEC 1711-4, but the detailed mechanism needs further study.

2.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086616

RESUMO

AIMS: We investigate extraintestinal pathogenic genes (ExPEC) related to virulence of Escherichia coli in flies from the dairy environment. METHODS AND RESULTS: We collected 217 flies from nine dairy farms, which were submitted to microbiological culture. Fifty-one E. coli were identified using mass spectrometry. Eleven dipteran families were identified, with a predominance of Muscidae, and a minor frequency of Tachinidae, Drosophilidae, Sphaeroceridae, Ulidiidae, Syrphidae, Chloropidae, Calliphoridae, Sarcophagidae, and Piophilidae. A panel of 16 virulence-encoding genes related to ExPEC infections were investigated, which revealed predominance of serum resistance (traT, 31/51 = 60.8%; ompT, 29/51 = 56.9%), iron uptake (irp2, 17/51 = 33.3%, iucD 11/51 = 21.6%), and adhesins (papC, 6/51 = 11.8%; papA, 5/51 = 9.8%). CONCLUSIONS: Our findings reveal Dipterans from milking environment carrying ExPEC virulence-encoding genes also identified in clinical bovine E. coli-induced infections.


Assuntos
Dípteros , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Animais , Bovinos , Escherichia coli/genética , Virulência/genética , Fazendas , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Fatores de Virulência/genética , Insetos
3.
Infect Genet Evol ; 116: 105519, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890808

RESUMO

Invasive non-typhoidal Salmonella (iNTS) from the clonal type ST313 (S. Typhimurium ST313) is the primary cause of invasive salmonellosis in Africa. Recently, in Brazil, iNTS ST313 strains have been isolated from different sources, but there is a lack of understanding of the mechanisms behind how these gut bacteria can break the gut barrier and reach the patient's bloodstream. Here, we compare 13 strains of S. Typhimurium ST313, previously unreported isolates, from human blood cultures, investigating aspects of virulence and mechanisms of resistance. Initially, RNAseq analyses between ST13-blood isolate and SL1344 (ST19) prototype revealed 15 upregulated genes directly related to cellular invasion and replication, such as sopD2, sifB, and pipB. Limited information is available about S. Typhimurium ST313 pathogenesis and epidemiology, especially related to the global distribution of strains. Herein, the correlation of strains isolated from different sources in Brazil was employed to compare clinical and non-clinical isolates, a total of 22 genomes were studied by single nucleotide polymorphism (SNPs). The epidemiological analysis of 22 genomes of S. Typhimurium ST313 strains grouped them into three distinct clusters (A, B, and C) by SNP analysis, where cluster A comprised five, group B six, and group C 11. The 13 clinical blood isolates were all resistant to streptomycin, 92.3% of strains were resistant to ampicillin and 15.39% were resistant to kanamycin. The resistance genes acrA, acrB, mdtK, emrB, emrR, mdsA, and mdsB related to the production of efflux pumps were detected in all (100%) strains studied, similar to pathogenic traits investigated. In conclusion, we evidenced that S. Typhimurium ST313 strains isolated in Brazil have unique epidemiology. The elevated frequencies of virulence genes such as sseJ, sopD2, and pipB are a major concern in these Brazilian isolates, showing a higher pathogenic potential.


Assuntos
Infecções por Salmonella , Febre Tifoide , Humanos , Salmonella typhimurium , Aminoglicosídeos , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Antibacterianos/farmacologia
4.
Microb Pathog ; 174: 105861, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427660

RESUMO

Umbilical infections in calves comprise a major cause of neonatal mortality and have been related to a variety of microorganisms. E. coli is an opportunistic enteropathogen characterized by a diversity of virulence factors (VF). Nonetheless, the gene profiles that encode VF associated with umbilical infections in calves and their effect on the clinical severity remains unclear. In this scenario, microbial identification (with an emphasis on E. coli), was carried out among 150 neonatal calves (≤30 days of age) with umbilical infections, where the omphalopathies were clinically scored as mild, moderate, or severe. Also, a panel of 16 virulence-encoding genes related to extraintestinal pathogenic E. coli (ExPEC) were investigated, i.e., fimbriae/adhesins (sfa/focDEa, papA, papC, afaBC), toxins (hlyA, sat, cnf1, cdt), siderophores (iroN, irp2, iucD, ireA), invasins (ibeA), and serum resistance (ompT, traT, kpsMT II). Bacteria and yeasts isolates were identified using mass spectrometry. Bacteria, yeasts, and fungi were isolated in 94.7% (142/150) of neonatal calves sampled. E. coli was the agent most frequently isolated (59/150 = 39.3%), in pure culture (27/59 = 45.8%) and combined infections (32/59 = 54.2%), although a great variety (n = 83) of other species of microorganisms were identified. Clinical severity scores of 1, 2, and 3 were observed in 32.2% (19/59), 23.7% (14/59), and 44.1% (26/59) of E. coli infections, respectively. The ExPEC genes detected were related to serum resistance (traT, 42/59 = 72.2%; ompT, 35/59 = 59.3%, kpsMTII, 10/59 = 17%), invasins (ibeA, 11/59 = 18.6%), siderophores (iucD, 9/59 = 15.3%; iroN, 8/59 = 13.6%), and adhesins/fimbriae (papA, 8/59 = 13.6%; papC, 15/59 = 9.6%). The presence of each virulence gene was not associated with the case's clinical score. Among all isolates, 89.8% (53/59) showed in vitro resistance to sulfamethoxazole/trimethoprim and 59.3% to ampicillin (35/59), while 94.1% (55/59) revealed a multidrug resistant profile. Great complexity of bacteria, yeast, and fungi species was identified, reinforcing the umbilical infections of neonatal calves as a polymicrobial disorder. The high occurrence of E. coli (39.3%) highlights the role of this pathogen in the etiology of umbilical infections in calves. Furthermore, a panel of ExPEC genes was investigated for the first time among calves that were clinically scored for case severity. The high prevalence of traT and ompT indicates that these serum resistance-related genes could be used as biomarkers for further investigations of ExPEC isolates from umbilical infections. Our results contribute to the etiological investigation, clinical severity scoring, antimicrobial resistance pattern, and virulence-related to ExPEC genes involved in umbilical infections of neonatal calves.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Fatores de Virulência , Animais , Bovinos , Antibacterianos/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/isolamento & purificação , Escherichia coli Extraintestinal Patogênica/patogenicidade , Sideróforos/genética , Virulência/genética , Fatores de Virulência/genética
5.
J Dairy Sci ; 106(2): 1403-1413, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36567244

RESUMO

Mammary pathogenic Escherichia coli (MPEC) is one of the most common pathogens associated with clinical mastitis. We analyzed isolates obtained from milk samples of cows with clinical mastitis, collected from 10 farms in Brazil, to verify molecular and phenotypic characteristics. A total of 192 (4.5%) mammary pathogenic E. coli isolates were obtained from 4,275 milk samples analyzed, but we tested 161. We assigned most of these isolates to E. coli phylogroups B1 (52.8%) and A (36.6%), although phylogroups B2, C, D, E, and unknown also occurred. All isolates were assessed for the presence of several genes encoding virulence factors, such as adhesins (sfaDE, papC, afaBC III, ecpA, fimH, papA, and iha), toxins (hlyA, cnf1, sat, vat, and cdt), siderophores (iroN, irp2, iucD, ireA, and sitA), an invasion protein (ibeA), and serum resistance proteins (traT, KpsMTII, and ompT), and isolates from phylogroups B1, B2, and E showed up to 8 genes. Two isolates harbored the locus of enterocyte effacement (escN+) and lack the bundle-forming pilus (bfpB-) operon, which corresponds to a molecular profile of a subgroup of diarrheagenic E. coli (aEPEC), thus being classified as hybrid MPEC/aEPEC isolates. These isolates displayed a localized adherence-like pattern of adherence in HeLa cells and were able to promote F-actin polymerization underneath adherent bacteria. Based on the pulsed-field gel electrophoresis analyses, considerable genetic variability was observed. A low index of antimicrobial resistance was observed and 2 extended-spectrum ß-lactamase-producing E. coli were identified, both harboring blaCTX-M15 gene, and were classified as ST10 and ST993 using multilocus sequence typing. A total of 148 (91.2%) isolates were weak biofilm producers or formed no biofilm. Because raw milk is still frequently consumed in Brazil, the occurrence of virulence factor-encoding genes from extraintestinal or diarrheagenic E. coli added to the presence of extended-spectrum ß-lactamase-producing isolates can turn this veterinary medicine problem into a public health concern.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Proteínas de Escherichia coli , Mastite Bovina , Feminino , Animais , Bovinos , Humanos , Escherichia coli , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Antibacterianos , Brasil , Células HeLa , Proteínas de Escherichia coli/genética , Mastite Bovina/microbiologia , Fatores de Virulência/genética , beta-Lactamases/genética
6.
Pathogens ; 11(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36558768

RESUMO

Mammary pathogenic E. coli (MPEC) is one of the main pathogens of environmental origin responsible for causing clinical mastitis worldwide. Even though E. coli are strongly associated with transient or persistent mastitis and the economic impacts of this disease, the virulence factors involved in the pathogenesis of MPEC remain unknown. Our aim was to characterize 110 MPEC isolates obtained from the milk of cows with clinical mastitis, regarding the virulence factor-encoding genes present, adherence patterns on HeLa cells, and antimicrobial resistance profile. The MPEC isolates were classified mainly in phylogroups A (50.9%) and B1 (38.2%). None of the isolates harbored genes used for diarrheagenic E. coli classification, but 26 (23.6%) and 4 (3.6%) isolates produced the aggregative or diffuse adherence pattern, respectively. Among the 22 genes investigated, encoding virulence factors associated with extraintestinal pathogenic E. coli pathogenesis, fimH (93.6%) was the most frequent, followed by traT (77.3%) and ompT (68.2%). Pulsed-field gel electrophoresis analysis revealed six pulse-types with isolates obtained over time, thus indicating persistent intramammary infections. The genes encoding beta-lactamases detected were as follows: blaTEM (35/31.8%); blaCTX-M-2/blaCTX-M-8 (2/1.8%); blaCTX-M-15 and blaCMY-2 (1/0.9%); five isolates were classified as extended spectrum beta-lactamase (ESBL) producers. As far as we know, papA, shf, ireA, sat and blaCTX-M-8 were detected for the first time in MPEC. In summary, the genetic profile of the MPEC studied was highly heterogeneous, making it impossible to establish a common genetic profile useful for molecular MPEC classification. Moreover, the detection of ESBL-producing isolates is a serious public health concern.

7.
Virulence ; 13(1): 1423-1433, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35982607

RESUMO

Hybrid-pathogenic Escherichia coli represent an important group of strains associated with intestinal and extraintestinal infections. Recently, we described strain UPEC-46, a uropathogenic/enteroaggregative E. coli (UPEC/EAEC) strain presenting the aggregative adherence (AA) pattern on bladder and colorectal epithelial cells mediated by aggregate-forming pili (AFP). However, the role of AFP and other uninvestigated putative fimbriae operons in UPEC-46 pathogenesis remains unclear. Thus, this study evaluated the involvement of AFP and other adhesins in uropathogenicity and intestinal colonization using different in vitro and in vivo models. The strain UPEC-46 was able to adhere and invade intestinal and urinary cell lines. A library of transposon mutants also identified the involvement of type I fimbriae (TIF) in the adherence to HeLa cells, in addition to colorectal and bladder cell lines. The streptomycin-treated mouse in vivo model also showed an increased number of bacterial counts in the colon in the presence of AFP and TIF. In the mouse model of ascending urinary tract infection (UTI), AFP was more associated with kidney colonization, while TIF appears to mediate bladder colonization. Results observed in in vivo experiments were also confirmed by electron microscopy (EM) analyses. In summary, the in vitro and in vivo analyses show a synergistic role of AFP and TIF in the adherence and colonization of intestinal and urinary epithelia. Therefore, we propose that hybrid E. coli strains carrying AFP and TIF could potentially cause intestinal and urinary tract infections in the same patient.


Assuntos
Aderência Bacteriana , Infecções por Escherichia coli , Fímbrias Bacterianas , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Células HeLa , Humanos , Intestinos/microbiologia , Camundongos , Sistema Urinário/microbiologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade
8.
Microorganisms ; 10(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336220

RESUMO

(1) Background: Pathogenic Escherichia coli are divided into two groups: diarrheagenic (DEC) and extraintestinal pathogenic (ExPEC) E. coli. ExPEC causing urinary tract infections (UTIs) are termed uropathogenic E. coli (UPEC) and are the most common cause of UTIs worldwide. (2) Methods: Here, we characterized 112 UPEC in terms of phylogroup, serotype, the presence of virulence factor-encoding genes, and antimicrobial resistance. (3) Results: The majority of the isolates were assigned into the phylogroup B2 (41.07%), and the serogroups O6 (12.5%) and O25 (8.9%) were the most frequent. Five hybrid UPEC (4.5%), with markers from two DEC pathotypes, i.e., atypical enteropathogenic (aEPEC) and enteroaggregative (EAEC) E. coli, were identified, and designated UPEC/aEPEC (one isolate) and UPEC/EAEC (four isolates), respectively. Three UPEC/EAEC harbored genes from the pap operon, and the UPEC/aEPEC carried ibeA. The highest resistance rates were observed for ampicillin (46.4%) and trimethoprim/sulfamethoxazole (34.8%), while 99.1% of the isolates were susceptible to nitrofurantoin and/or fosfomycin. Moreover, 9.8% of the isolates were identified as Extended Spectrum ß-Lactamase producers, including one hybrid UPEC/EAEC. (4) Conclusion: Our data reinforce that hybrid UPEC/DEC are circulating in the city of Botucatu, Brazil, as uropathogens. However, how and whether these combinations of genes influence their pathogenicity is a question that remains to be elucidated.

9.
Environ Microbiol ; 24(3): 1035-1051, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34431194

RESUMO

The interaction of enteroaggregative Escherichia coli (EAEC) strains with the colonic gut mucosa is characterized by the ability of the bacteria to form robust biofilms, to bind mucin, and induce a local inflammatory response. These events are mediated by a repertoire of five different aggregative adherence fimbriae variants (AAF/I-V) typically encoded on virulence plasmids. In this study, we report the production in EAEC strains of a new YehD fimbriae (YDF), which is encoded by the chromosomal gene cluster yehABCD, also present in most E. coli strains. Immuno-labelling of EAEC strain 042 with anti-AAF/II and anti-YDF antibodies demonstrated the presence of both AAF/II and YDF on the bacterial surface. We investigated the role of YDF in cell adherence, biofilm formation, colonization of spinach leaves, and induction of pro-inflammatory cytokines release. To this aim, we constructed yehD deletion mutants in different EAEC backgrounds (strains 17-2, 042, 55989, C1010, 278-1, J7) each harbouring one of the five AAFs. The effect of the YDF mutation was strain dependent and AAF independent as the lack of YDF had a different impact on the phenotypes manifested by the different EAECs tested. Expression of the yehABCD operon in a E. coli K12 ORN172 showed that YDF is important for biofilm formation but not for adherence to HeLa cells. Lastly, screening of pro-inflammatory cytokines in supernatants of Caco-2 cells infected with EAEC strains 042 and J7 and their isogenic ΔyehD mutants showed that these mutants were significantly defective in release of IL-8 and TNF-α. This study contributes to the understanding of the complex and diverse mechanisms of adherence of EAEC strains and identifies a new potential target for preventive measures of gastrointestinal illness caused by EAEC and other E. coli pathogroups.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Aderência Bacteriana/genética , Células CACO-2 , Citocinas/metabolismo , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Células HeLa , Humanos , Virulência/genética
10.
Virulence, v. 13, n. 1, p. 1423-1433, ago. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4482

RESUMO

Hybrid-pathogenic Escherichia coli represent an important group of strains associated with intestinal and extraintestinal infections. Recently, we described strain UPEC-46, a uropathogenic/enteroaggregative E. coli (UPEC/EAEC) strain presenting the aggregative adherence (AA) pattern on bladder and colorectal epithelial cells mediated by aggregate-forming pili (AFP). However, the role of AFP and other uninvestigated putative fimbriae operons in UPEC-46 pathogenesis remains unclear. Thus, this study evaluated the involvement of AFP and other adhesins in uropathogenicity and intestinal colonization using different in vitro and in vivo models. The strain UPEC-46 was able to adhere and invade intestinal and urinary cell lines. A library of transposon mutants also identified the involvement of type I fimbriae (TIF) in the adherence to HeLa cells, in addition to colorectal and bladder cell lines. The streptomycin-treated mouse in vivo model also showed an increased number of bacterial counts in the colon in the presence of AFP and TIF. In the mouse model of ascending urinary tract infection (UTI), AFP was more associated with kidney colonization, while TIF appears to mediate bladder colonization. Results observed in in vivo experiments were also confirmed by electron microscopy (EM) analyses. In summary, the in vitro and in vivo analyses show a synergistic role of AFP and TIF in the adherence and colonization of intestinal and urinary epithelia. Therefore, we propose that hybrid E. coli strains carrying AFP and TIF could potentially cause intestinal and urinary tract infections in the same patient.

11.
Virulence ; 12(1): 3073-3093, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34923895

RESUMO

Enteroaggregative Escherichia coli (EAEC) comprises an important diarrheagenic pathotype, while uropathogenic E. coli (UPEC) is the most important agent of urinary tract infection (UTI). Recently, EAEC virulence factors have been detected in E. coli strains causing UTI, showing the importance of these hybrid-pathogenic strains. Previously, we detected an E. coli strain isolated from UTI (UPEC-46) presenting characteristics of EAEC, e.g., the aggregative adherence (AA) pattern and EAEC-associated genes (aatA, aap, and pet). In this current study, we analyzed the whole genomic sequence of UPEC-46 and characterized some phenotypic traits. The AA phenotype was observed in cell lineages of urinary and intestinal origin. The production of curli, cellulose, bacteriocins, and Pet toxin was detected. Additionally, UPEC-46 was not capable of forming biofilm using different culture media and human urine. The genome sequence analysis showed that this strain belongs to serotype O166:H12, ST10, and phylogroup A, harbors the tet, aadA, and dfrA/sul resistance genes, and is phylogenetically more related to EAEC strains isolated from human feces. UPEC-46 harbors three plasmids. Plasmid p46-1 (~135 kb) carries some EAEC marker genes and those encoding the aggregate-forming pili (AFP) and its regulator (afpR). A mutation in afpA (encoding the AFP major pilin) led to the loss of pilin production and assembly, and notably, a strongly reduced adhesion to epithelial cells. In summary, the genetic background and phenotypic traits analyzed suggest that UPEC-46 is a hybrid strain (UPEC/EAEC) and highlights the importance of AFP adhesin in the adherence to colorectal and bladder cell lines.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Proteínas de Fímbrias/genética , Humanos , Masculino , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , alfa-Fetoproteínas
12.
Braz J Microbiol ; 52(4): 2075-2079, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34448133

RESUMO

Enteropathogenic (EPEC) and enteroaggregative (EAEC) Escherichia coli are two of the major pathotypes of diarrheagenic E. coli causing disease worldwide. Here, we report a diarrheal outbreak caused by E. coli of serotype O3:H2, harboring virulence markers from EPEC (eae) and/or EAEC (aggR). This is likely the first E. coli diarrheal outbreak caused by a hybrid atypical-EPEC/EAEC clone reported in Brazil.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Brasil/epidemiologia , Células Clonais , Diarreia/epidemiologia , Diarreia/etiologia , Diarreia/microbiologia , Surtos de Doenças , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/epidemiologia , Humanos , Sorogrupo , Fatores de Virulência
13.
Braz J Microbiol ; 52(3): 1067-1075, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34105110

RESUMO

Urinary tract infections (UTIs) are a major public health concern in both community and hospital settings worldwide. Uropathogenic Escherichia coli (UPEC) is the main causative agent of UTI and increasingly associated with antibiotic resistance. Herein, we report the draft genome sequence of 9 fluoroquinolone-resistant UPEC isolates from Brazil and examine selected major phenotypic features, such as antimicrobial resistance profile, phylogroup, serotype, sequence type (ST), virulence genes, and resistance marks. Besides the quinolone resistance, beta-lactams, ESBL production, aminoglycosides, and tetracycline resistance were observed. High prevalence of 20 virulence genes was detected in all isolates, such as those encoding type 1 fimbriae, acid tolerance system, and hemolysin E, particularly within E. coli B2 phylogroup, as ST131 and ST1193 strains, among other genomic analyses as genomic islands, resistance plasmids, and integron identification.


Assuntos
Infecções por Escherichia coli , Genoma Bacteriano , Infecções Urinárias , Escherichia coli Uropatogênica , Brasil , Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Fluoroquinolonas/farmacologia , Humanos , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética , Fatores de Virulência/genética
14.
Environ Microbiol, v. 24, n. 3, p. 1035-1051, ago. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4002

RESUMO

The interaction of enteroaggregative Escherichia coli (EAEC) strains with the colonic gut mucosa is characterized by the ability of the bacteria to form robust biofilms, to bind mucin, and induce a local inflammatory response. These events are mediated by a repertoire of five different aggregative adherence fimbriae variants (AAF/I-V) typically encoded on virulence plasmids. In this study, we report the production in EAEC strains of a new YehD fimbriae (YDF), which is encoded by the chromosomal gene cluster yehABCD, also present in most E. coli strains. Immuno-labelling of EAEC strain 042 with anti-AAF/II and anti-YDF antibodies demonstrated the presence of both AAF/II and YDF on the bacterial surface. We investigated the role of YDF in cell adherence, biofilm formation, colonization of spinach leaves, and induction of pro-inflammatory cytokines release. To this aim, we constructed yehD deletion mutants in different EAEC backgrounds (strains 17-2, 042, 55989, C1010, 278-1, J7) each harbouring one of the five AAFs. The effect of the YDF mutation was strain dependent and AAF independent as the lack of YDF had a different impact on the phenotypes manifested by the different EAECs tested. Expression of the yehABCD operon in a E. coli K12 ORN172 showed that YDF is important for biofilm formation but not for adherence to HeLa cells. Lastly, screening of pro-inflammatory cytokines in supernatants of Caco-2 cells infected with EAEC strains 042 and J7 and their isogenic ΔyehD mutants showed that these mutants were significantly defective in release of IL-8 and TNF-α. This study contributes to the understanding of the complex and diverse mechanisms of adherence of EAEC strains and identifies a new potential target for preventive measures of gastrointestinal illness caused by EAEC and other E. coli pathogroups.

15.
EcoSal Plus ; 9(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32588811

RESUMO

Escherichia albertii is an emerging enteropathogen of humans and many avian species. This bacterium is a close relative of Escherichia coli and has been frequently misidentified as enteropathogenic or enterohemorrhagic E. coli due to their similarity in phenotypic and genetic features, such as various biochemical properties and the possession of a type III secretion system encoded by the locus of enterocyte effacement. This pathogen causes outbreaks of gastroenteritis, and some strains produce Shiga toxin. Although many genetic and phenotypic studies have been published and the genome sequences of more than 200 E. albertii strains are now available, the clinical significance of this species is not yet fully understood. The apparent zoonotic nature of the disease requires a deeper understanding of the transmission routes and mechanisms of E. albertii to develop effective measures to control its transmission and infection. Here, we review the current knowledge of the phylogenic relationship of E. albertii with other Escherichia species and the biochemical and genetic properties of E. albertii, with particular emphasis on the repertoire of virulence factors and the mechanisms of pathogenicity, and we hope this provides a basis for future studies of this important emerging enteropathogen.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia/patogenicidade , Gastroenterite/microbiologia , Filogenia , Animais , Escherichia/genética , Escherichia coli/genética , Infecções por Escherichia coli/transmissão , Genoma Bacteriano , Humanos , Camundongos , Toxina Shiga/biossíntese , Fatores de Virulência
16.
PLoS Negl Trop Dis ; 14(6): e0008373, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479541

RESUMO

BACKGROUND: Atypical enteropathogenic Escherichia coli (aEPEC) are one of the most frequent intestinal E. coli pathotypes isolated from diarrheal patients in Brazil. Isolates of aEPEC contain the locus of enterocyte effacement, but lack the genes of the bundle-forming pilus of typical EPEC, and the Shiga toxin of enterohemorrhagic E. coli (EHEC). The objective of this study was to evaluate the phylogeny and the gene content of Brazilian aEPEC genomes compared to a global aEPEC collection. METHODOLOGY: Single nucleotide polymorphism (SNP)-based phylogenomic analysis was used to compare 106 sequenced Brazilian aEPEC with 221 aEPEC obtained from other geographic origins. Additionally, Large-Scale BLAST Score Ratio was used to determine the shared versus unique gene content of the aEPEC studied. PRINCIPAL FINDINGS: Phylogenomic analysis demonstrated the 106 Brazilian aEPEC were present in phylogroups B1 (47.2%, 50/106), B2 (23.6%, 25/106), A (22.6%, 24/106), and E (6.6%, 7/106). Identification of EPEC and EHEC phylogenomic lineages demonstrated that 42.5% (45/106) of the Brazilian aEPEC were in four of the previously defined lineages: EPEC10 (17.9%, 19/106), EPEC9 (10.4%, 11/106), EHEC2 (7.5%, 8/106) and EPEC7 (6.6%, 7/106). Interestingly, an additional 28.3% (30/106) of the Brazilian aEPEC were identified in five novel lineages: EPEC11 (14.2%, 15/106), EPEC12 (4.7%, 5/106), EPEC13 (1.9%, 2/106), EPEC14 (5.7%, 6/106) and EPEC15 (1.9%, 2/106). We identified 246 genes that were more frequent among the aEPEC isolates from Brazil compared to the global aEPEC collection, including espG2, espT and espC (P<0.001). Moreover, the nleF gene was more frequently identified among Brazilian aEPEC isolates obtained from diarrheagenic patients when compared to healthy subjects (69.7% vs 41.2%, P<0.05). CONCLUSION: The current study demonstrates significant genomic diversity among aEPEC from Brazil, with the identification of Brazilian aEPEC isolates to five novel EPEC lineages. The greater prevalence of some virulence genes among Brazilian aEPEC genomes could be important to the specific virulence strategies used by aEPEC in Brazil to cause diarrheal disease.


Assuntos
Hibridização Genômica Comparativa/métodos , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Genoma Bacteriano , Filogenia , Fatores de Virulência/genética , Brasil , Infecções por Escherichia coli , Proteínas de Escherichia coli/genética , Humanos , Tipagem de Sequências Multilocus , Sorotipagem , Virulência
17.
Artigo em Inglês | MEDLINE | ID: mdl-32391284

RESUMO

Enteroaggregative Escherichia coli (EAEC) is an important agent of acute and persistent diarrhea in children and adults worldwide. Here we report a characterization of 220 EAEC isolates, 88.2% (194/220) of which were typical and 11.8% (26/220) were atypical, obtained from diarrheal patients during seven years (2010-2016) of epidemiological surveillance in Brazil. The majority of the isolates were assigned to phylogroups A (44.1%, 97/220) or B1 (21.4%, 47/220). The aggregative adherence (AA) pattern was detected in 92.7% (204/220) of the isolates, with six of them exhibiting AA concomitantly with a chain-like adherence pattern; and agg5A and agg4A were the most common adhesin-encoding genes, which were equally detected in 14.5% (32/220) of the isolates. Each of 12 virulence factor-encoding genes (agg4A, agg5A, pic, aap, aaiA, aaiC, aaiG, orf3, aar, air, capU, and shf) were statistically associated with typical EAEC (P < 0.05). The genes encoding the newly described aggregate-forming pili (AFP) searched (afpB, afpD, afpP, and afpA2), and/or its regulator (afpR), were exclusively detected in atypical EAEC (57.7%, 15/26), and showed a significant association with this subgroup of EAEC (P < 0.001). In conclusion, we presented an extensive characterization of the EAEC circulating in the Brazilian settings and identified the afp genes as putative markers for increasing the efficiency of atypical EAEC diagnosis.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Adulto , Brasil , Criança , Diarreia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Humanos , Virulência/genética , Fatores de Virulência/genética
18.
J Dairy Sci ; 103(4): 3606-3614, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32037173

RESUMO

Escherichia coli is a major pathogen involved in the etiology of environmentally derived bovine mastitis and is characterized by a variety of virulence factors (VF). Mammary infections with E. coli have shown a wide range of clinical signs, causing changes in milk (score 1, or mild), abnormal appearance of milk and udder inflammation (score 2, or moderate), and abnormalities in milk, udder inflammation, and systemic signs of illness (score 3, or severe). Nevertheless, to date, the profile of the genes related to the virulence of the pathogen in mammary infections and the severity scores of cases have not been thoroughly elucidated. Therefore, a panel of 18 virulence-encoding genes associated with extra-enteric pathogenicity of E. coli (ExPEC) were investigated in addition to in vitro swimming and swarming motility profiles and antimicrobial susceptibility/resistance patterns among 114 E. coli strains isolated from cows with clinical mastitis and different severity scores. Of 114 clinical cases, 39.5, 54.4, and 6.1% were mild, moderate, and severe, respectively. The main genes related to VF harbored by isolates were adhesins (fimH 100%; ecpA 64.0%, fimA 31.6%), serum resistance (traT 81.6%; ompT 35.1%), siderophores (irp2 9.6%), and hemolysin (hlyA 7%). Among the isolates studied, 99.1% showed in vitro resistance to bacitracin and cloxacillin, and 98.2% to lincosamin. Of the total isolates, 98.2% were considered multidrug resistant based on the multiple antimicrobial resistance index. No significant difference was observed between mean swimming (13.8 mm) and swarming (13.5 mm) motility, as well as severity scores of clinical mastitis and the ExPEC genes studied. The isolation of strains resistant to various antimicrobials, even though tested only in vitro, highlights the importance of rational use of antimicrobials for mastitis treatment. The high prevalence of the genes related to serum resistance (traT and ompT) and adhesion (ecpA) of the pathogen, in addition to main associations between the genes fimH, ecpA, and traT among cows with severity scores of 1 (15%) and 2 (22.6%), indicates that the genes traT, ecpA, and ompT could be further studied as biomarkers of ExPEC for clinical intramammary infections. In addition, the ExPEC genes ompT (protectin), ibe10 (invasin), and ecpA (adhesin) were investigated for the first time among cows with mastitis, where scores of clinical severity were assessed. Results of this study contribute to the characterization of virulence mechanisms and antimicrobial resistance profile of ExPEC variants that affect dairy cows with different scores of clinical mastitis.


Assuntos
Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/patogenicidade , Mastite Bovina/microbiologia , Animais , Antibacterianos/farmacologia , Bovinos , Cloxacilina/farmacologia , Resistência a Múltiplos Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Feminino , Genes Bacterianos , Intestinos/efeitos dos fármacos , Leite/microbiologia , Virulência/genética , Fatores de Virulência/genética
19.
Food Res Int ; 129: 108835, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036904

RESUMO

Salmonella spp. is responsible for severe foodborne disease, and is one of the main agents involved in foodborne outbreaks worldwide. Contamination occurs mainly as a result of poultry and egg consumption since they can carry some serotypes pathogenic to humans. The aim of the study was to evaluate the persistence and pathogenic potential of Salmonella spp. (n = 40) isolated from poultry slaughterhouse mats, using adhesion and invasion assays, antimicrobial susceptibility by disc diffusion, and biofilm production as phenotypic tests and genotypic analyses. Polystyrene mats presented 3.2 times greater chance of isolating Salmonella than canvas mats. Besides, we observed resistance to tetracycline (17.5%), ampicillin (10%), cefotaxime (7.5%), trimethoprim-sulfamethoxazole (5%), and chloramphenicol (2.5%). All strains possessed the invA, sipB, sipD, ssaR, sifA, sitC, iroN, tolC, flgK, fljB, and flgL genes. The genes sopB and sipA were both present in 92.5% of the isolates, while sopD and spvB were observed in 90% and 32.5% of strains, respectively. All strains adhered to and invaded HeLa cells. Regarding biofilm production, 31 (77.5%) strains were able to produce biofilm on polystyrene microplates. Using PFGE, we detected the persistence of clones in the environment for up to 18 fromthe 20 weeks. The ability of these strains to produce a biofilm and thus persist in the environment and disperse through contact surfaces in the processing plant favors the contamination of food, aggravated by the pathogenic potential of these isolates demonstrated by their adhesion capacity, invasion and resistance to various antibiotic agents.


Assuntos
Matadouros , Aves Domésticas/microbiologia , Salmonella/isolamento & purificação , Animais , Antibacterianos/farmacologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Eletroforese em Gel de Campo Pulsado , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Salmonella/efeitos dos fármacos , Salmonella/metabolismo , Tetraciclina/farmacologia
20.
Front Cell Infect Microbiol ; 10: 571088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392102

RESUMO

Diarrhea is one of the main causes of infant mortality worldwide, mainly in the developing world. Among the various etiologic agents, Escherichia albertii is emerging as an important human enteropathogen. E. albertii promote attaching and effacing (AE) lesions due to the presence of the locus of enterocyte effacement (LEE) that encodes a type three secretion system (T3SS), the afimbrial adhesin intimin and its translocated receptor, Tir, and several effector proteins. We previously showed that E. albertii strain 1551-2 invades several epithelial cell lineages by a process that is dependent on the intimin-Tir interaction. To understand the contribution of T3SS-dependent effectors present in E. albertii 1551-2 during the invasion process, we performed a genetic analysis of the LEE and non-LEE genes and evaluated the expression of the LEE operons in various stages of bacterial interaction with differentiated intestinal Caco-2 cells. The kinetics of the ability of the 1551-2 strain to colonize and form AE lesions was also investigated in epithelial HeLa cells. We showed that the LEE expression was constant during the early stages of infection but increased at least 4-fold during bacterial persistence in the intracellular compartment. An in silico analysis indicated the presence of a new tccP/espFU subtype, named tccP3. We found that the encoded protein colocalizes with Tir and polymerized F-actin during the infection process in vitro. Moreover, assays performed with Nck null cells demonstrated that the 1551-2 strain can trigger F-actin polymerization in an Nck-independent pathway, despite the fact that TccP3 is not required for this phenotype. Our study highlights the importance of the T3SS during the invasion process and for the maintenance of E. albertii 1551-2 inside the cells. In addition, this work may help to elucidate the versatility of the T3SS for AE pathogens, which are usually considered extracellular and rarely reach the intracellular environment.


Assuntos
Células Epiteliais , Escherichia , Proteínas de Bactérias , Células CACO-2 , Genômica , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...